Difference between revisions of "Rational Equations"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
(Created page with "Rational equations are equations containing rational expressions (or expressions with fractions that contain real numbers and/or variables). Some examples of rational equation...")
 
Line 3: Line 3:
 
* <math> \frac{1}{8}x + 2 =  \frac{1}{4}x </math>
 
* <math> \frac{1}{8}x + 2 =  \frac{1}{4}x </math>
 
* <math> \frac{1}{x+1} =  \frac{2}{3} </math>
 
* <math> \frac{1}{x+1} =  \frac{2}{3} </math>
* <math> \frac{x^2}{3x + 7} =  \frac{x}{6} </math>
+
* <math> \frac{y^2}{3y + 7} =  \frac{y}{6} </math>
  
 
Steps to solving rational equations:
 
Steps to solving rational equations:
Line 11: Line 11:
 
# Solve the resulting equation.
 
# Solve the resulting equation.
 
# Check: If any values found in Step 1 are algebraic solutions, discard them. Check any remaining solutions in the original equation.
 
# Check: If any values found in Step 1 are algebraic solutions, discard them. Check any remaining solutions in the original equation.
 +
 +
Example problem: <math> 1 - \frac{1}{x} = \frac{2/x^2} </math>
 +
# If x = 0, the denominator of <math> \frac{1}{x} </math> and <math> \frac{2/x^2} </math> will be 0.
 +
# The least common denominator of all terms in the equation is <math> x^2 </math>.
 +
# Multiplying each side of the equation <math> 1 - \frac{1}{x} = \frac{2/x^2} </math> with <math> x^2 </math> gives us <math> x^2 - x = 2 </math>
 +
# <math> x^2 - x = 2 \to x^2 - x - 2 = 0 \to (x - 2)(x + 1) = 0 \to x = 1, x = 2 </math>
  
 
==Resources==
 
==Resources==

Revision as of 10:48, 22 September 2021

Rational equations are equations containing rational expressions (or expressions with fractions that contain real numbers and/or variables). Some examples of rational equations:

Steps to solving rational equations:

  1. Note any value of the variable that would make any denominator zero.
  2. Find the least common denominator of all denominators in the equation.
  3. Clear the fractions by multiplying both sides of the equation by the LCD.
  4. Solve the resulting equation.
  5. Check: If any values found in Step 1 are algebraic solutions, discard them. Check any remaining solutions in the original equation.

Example problem: Failed to parse (syntax error): {\displaystyle 1 - \frac{1}{x} = \frac{2/x^2} }

  1. If x = 0, the denominator of and Failed to parse (syntax error): {\displaystyle \frac{2/x^2} } will be 0.
  2. The least common denominator of all terms in the equation is .
  3. Multiplying each side of the equation Failed to parse (syntax error): {\displaystyle 1 - \frac{1}{x} = \frac{2/x^2} } with gives us

Resources