Real Function Limits:Sequential Criterion

From Department of Mathematics at UTSA
Revision as of 09:38, 20 October 2021 by Lila (talk | contribs)
Jump to navigation Jump to search

The Sequential Criterion for a Limit of a Function

We will now look at a very important theorem known as The Sequential Criterion for a Limit which merges the concept of the limit of a function at a cluster point from with regards to sequences from that converge to .

Theorem 1 (The Sequential Criterion for a Limit of a Function): Let be a function and let be a cluster point of . Then if and only if for all sequences from the domain where and then .

Consider a function that has a limit when is close to . Now consider all sequences from the domain where these sequences converge to , that is . The Sequential Criterion for a Limit of a Function says that then that as goes to infinity, the function evaluated at these will have its limit go to .

For example, consider the function defined by the equation , and suppose we wanted to compute . We should already know that this limit is zero, that is . Now consider the sequence . This sequence is clearly contained in the domain of . Furthermore, this sequence converges to 0, that is . If all such sequences that converge to have the property that converges to , then we can say that .

We will now look at the proof of The Sequential Criterion for a Limit of a Function.

  • Proof: Suppose that , and let be a sequence in such that such that . We thus want to show that .
  • Let Failed to parse (syntax error): {\displaystyle \epsilon > 0} . We are given that and so for Failed to parse (syntax error): {\displaystyle \epsilon > 0} there exists a Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta > 0} such that if and Failed to parse (syntax error): {\displaystyle 0 < \mid x - c \mid < \delta} then we have that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mid f(x) - L \mid < \epsilon} . Now since Failed to parse (syntax error): {\displaystyle \delta > 0} , since we have that then there exists an such that if Failed to parse (syntax error): {\displaystyle n ≥ N} then Failed to parse (syntax error): {\displaystyle \mid a_n - c \mid < \delta} . Therefore .
  • Therefore it must be that Failed to parse (syntax error): {\displaystyle \mid f(a_n) - L \mid < \epsilon} , in other words, Failed to parse (syntax error): {\displaystyle \forall n ≥ N} we have that Failed to parse (syntax error): {\displaystyle \mid f(a_n) - L \mid < \epsilon} and so .
  • Suppose that for all in such that and , we have that . We want to show that .
  • Suppose not, in other words, suppose that Failed to parse (syntax error): {\displaystyle \exists \epsilon_0 > 0} such that Failed to parse (syntax error): {\displaystyle \forall \delta > 0} then such that Failed to parse (syntax error): {\displaystyle \mid f(x_{\delta}) - L \mid ≥ \epsilon_0} . Let . Then there exists , in other words, Failed to parse (syntax error): {\displaystyle 0 < \mid a_n - c \mid < \frac{1}{n}} and . However, Failed to parse (syntax error): {\displaystyle \mid f(a_n) - L \mid ≥ \epsilon_0} so , a contradiction. Therefore .


Resources