Difference between revisions of "Trigonometric Integrals"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
(Added video links)
 
Line 1: Line 1:
[https://youtu.be/Sv-bSbAQeXc Trigonometric Integrals Involving Powers of Sine and Cosine - Part 1] by James Sousa
 
  
[https://youtu.be/vPnuigP8I6I Trigonometric Integrals Involving Powers of Sine and Cosine - Part 2] by James Sousa
+
When the integrand is primarily or exclusively based on trigonometric functions, the following techniques are useful.
  
[https://youtu.be/RGaDMqhOg8Y Trigonometric Integrals Involving Powers of Secant and Tangent - Part 1] by James Sousa
+
===Powers of Sine and Cosine===
 +
We will give a general method to solve generally integrands of the form <math>\cos^m(x)\cdot\sin^n(x)</math> . First let us work through an example.
  
[https://youtu.be/o8sIHlS17qc Trigonometric Integrals Involving Powers of Secant and Tangent - Part 1] by James Sousa
+
:<math>\int\cos^3(x)\sin^2(x)dx</math>
  
[https://youtu.be/lTqnlihOC4o Trigonometric Integrals - Part 1 of 6] by patrickJMT
+
Notice that the integrand contains an odd power of cos. So rewrite it as
  
[https://youtu.be/zyg9k1je7Fg Trigonometric Integrals - Part 2 of 6] by patrickJMT
+
:<math>\int\cos^2(x)\sin^2(x)\cos(x)dx</math>
  
[https://youtu.be/BhJ4soojyAQ Trigonometric Integrals - Part 3 of 6] by patrickJMT
+
We can solve this by making the substitution <math>u=\sin(x)</math> so <math>du=\cos(x)dx</math> . Then we can write the whole integrand in terms of <math>u</math> by using the identity
 +
:<math>\cos^2(x)=1-\sin^2(x)=1-u^2</math> .
 +
So
 +
:{|
 +
|<math>\int\cos^3(x)\sin^2(x)dx</math>
 +
|<math>=\int\cos^2(x)\sin^2(x)\cos(x)dx</math>
 +
|-
 +
|
 +
|<math>=\int (1-u^2)u^2du</math>
 +
|-
 +
|
 +
|<math>=\int u^2du-\int u^4du</math>
 +
|-
 +
|
 +
|<math>=\frac{u^3}{3}+\frac{u^5}{5}+C</math>
 +
|-
 +
|
 +
|<math>=\frac{\sin^3(x)}{3}-\frac{\sin^5(x)}{5}+C</math>
 +
|}
  
[https://youtu.be/8CHHY-2Ctug Trigonometric Integrals - Part 4 of 6] by patrickJMT
+
This method works whenever there is an odd power of sine or cosine.
  
[https://youtu.be/QdNScjd5bno Trigonometric Integrals - Part 5 of 6] by patrickJMT
+
<blockquote style="background: white; border: 1px solid black; padding: 1em;">
 +
To evaluate <math>\int\cos^m(x)\sin^n(x)dx</math> when '''either''' <math>m</math> or <math>n</math> is '''odd'''.
 +
*If <math>m</math> is odd substitute <math>u=\sin(x)</math> and use the identity <math>\cos^2(x)=1-\sin^2(x)=1-u^2</math> .
 +
*If <math>n</math> is odd substitute <math>u=\cos(x)</math> and use the identity <math>\sin^2(x)=1-\cos^2(x)=1-u^2</math> .
 +
</blockquote>
  
[https://youtu.be/m3zG7c52QR4 Trigonometric Integrals - Part 6 of 6] by patrickJMT
+
====Example====
 +
Find <math>\int\limits_0^\frac{\pi}{2} \cos^{40}(x)\sin^3(x)dx</math> .
  
[https://youtu.be/WYhyq_mTCZs Trigonometric integrals - sin^mcos^n, odd m] by Kriata King
+
As there is an odd power of <math>\sin</math> we let <math>u=\cos(x)</math> so <math>du=-\sin(x)dx</math> . Notice that when <math>x=0</math> we have <math>u=\cos(0)=1</math> and when <math>x=\frac{\pi}{2}</math> we have <math>u=\cos(\tfrac{\pi}{2})=0</math> .
  
[https://youtu.be/RRDiT-djQPk Trigonometric integrals - sin^mcos^n, odd n] by Kriata King
+
:{|
 +
|<math>\int\limits_0^\frac{\pi}{2} \cos^{40}(x)\sin^3(x)dx</math>
 +
|<math>=\int\limits_0^\frac{\pi}{2} \cos^{40}(x)\sin^2(x)\sin(x)dx</math>
 +
|-
 +
|
 +
|<math>=-\int\limits_1^0 u^{40}(1-u^2)du</math>
 +
|-
 +
|
 +
|<math>=\int\limits_0^1 u^{40}(2-u^2)du</math>
 +
|-
 +
|
 +
|<math>=\int\limits_0^5
 +
(u^{40}-u^{42})du</math>
 +
|-
 +
|
 +
|<math>=\left(\frac{u^{41}}{41}-\frac{u^{43}}{43}\right)\Bigg|_0^1</math>
 +
|-
 +
|
 +
|<math>=\frac{1}{41}-\frac{1}{43}</math>
 +
|}
  
[https://youtu.be/rpbr2nH7lNY Trigonometric integrals - sin^mcos^n, m and n even] by Kriata King
+
When both <math>m</math> and <math>n</math> are even, things get a little more complicated.
  
[https://youtu.be/CK2SfrzF_c4 Integrals of trigonometric functions, tan^msec^n, even n] by Krista King
+
<blockquote style="background: white; border: 1px solid black; padding: 1em;">
 +
To evaluate <math>\int\cos^m(x)\sin^n(x)dx</math> when both <math>m</math> and <math>n</math> are '''even'''.
  
[https://youtu.be/0TuZSSah5hc Integrals of trigonometric functions, tan^msec^n, odd m] by Krista King
+
<br>Use the identities <math>\sin^2(x)=\frac{1-\cos(2x)}{2}</math> and <math>\cos^2(x)=\frac{1+\cos(2x)}{2}</math> .
 +
</blockquote>
 +
 
 +
====Example====
 +
Find <math>\int\sin^2(x)\cos^4(x)dx</math> .
 +
 
 +
As <math>\sin^2(x)=\frac{1-\cos(2x)}{2}</math> and <math>\cos^2(x)=\frac{1+\cos(2x)}{2}</math> we have
 +
:<math>\int\sin^2(x)\cos^4(x)dx=\int\left(\frac{1-\cos(2x)}{2}\right)\left(\frac{1+\cos(2x)}{2}\right)^2dx</math>
 +
and expanding, the integrand becomes
 +
:<math>\frac{1}{8}\int\left(1-\cos^2(2x)+\cos(2x)-\cos^3(2x)\right)dx</math>
 +
 
 +
Using the multiple angle identities
 +
 
 +
:{|
 +
|<math>I</math>
 +
|<math>=\frac{1}{8}\left(\int 1dx-\int\cos^2(2x)dx+\int\cos(2x)dx-\int\cos^3(2x)dx\right)</math>
 +
|-
 +
|
 +
|<math>=\frac{1}{8}\left(x-\frac{1}{2}\int\Big(1+\cos(4x)\Big)dx+\frac{\sin(2x)}{2}-\int\cos^2(2x)\cos(2x)dx\right)</math>
 +
|-
 +
|
 +
|TODO: CORRECT FORMULA<math>=\frac{1}{164}\left(x+\sin(2x)+\int\cos(4x)dx-2\int\Big(1-\sin^2(2x)\Big)\cos(2x)dx\right)</math>
 +
|}
 +
 
 +
then we obtain on evaluating
 +
:<math>I=\frac{x}{16}-\frac{\sin(4x)}{64}+\frac{\sin^3(2x)}{48}+C</math>
 +
 
 +
===Powers of Tan and Secant===
 +
<blockquote style="background: white; border: 1px solid black; padding: 1em;">
 +
To evaluate <math>\int\tan^m(x)\sec^n(x)dx</math> .
 +
#If <math>n</math> is even and <math>n\ge 2</math> then  substitute <math>u=tan(x)</math> and use the identity <math>\sec^2(x)=1+\tan^2(x)</math> .
 +
#If <math>n</math> and <math>m</math> are both odd then substitute <math>u=\sec(x)</math> and use the identity <math>\tan^2(x)=\sec^2(x)-1</math> .
 +
#If <math>n</math> is odd and <math>m</math> is even then use the identity <math>\tan^2(x)=\sec^2(x)-1</math> and apply a reduction formula to integrate <math>\sec^j(x)dx</math> , using the examples below to integrate when <math>j=1,2</math> .
 +
</blockquote>
 +
 
 +
====Example 1====
 +
Find <math>\int\sec^2(x)dx</math> .
 +
 
 +
There is an even power of <math>\sec(x)</math> . Substituting <math>u=\tan(x)</math> gives <math>du=\sec^2(x)dx</math> so
 +
 
 +
<math>\int\sec^2(x)dx=\int du=u+C=\tan(x)+C.</math>
 +
 
 +
 
 +
====Example 2====
 +
Find <math>\int\tan(x)dx</math> .
 +
 
 +
Let <math>u=\cos(x)</math> so <math>du=-\sin(x)dx</math> . Then
 +
 
 +
:{|
 +
|<math>\int\tan(x)dx</math>
 +
|<math>=\int\frac{\sin(x)}{\cos(x)}dx</math>
 +
|-
 +
|
 +
|<math>=\int -\frac{du}{u}</math>
 +
|-
 +
|
 +
|<math>=-\ln|u|+C</math>
 +
|-
 +
|
 +
|<math>=-\ln\Big|\cos(x)\Big|+C</math>
 +
|-
 +
|
 +
|<math>=\ln\Big|\sec(x)\Big|+C</math>
 +
|}
 +
 
 +
 
 +
====Example 3====
 +
Find <math>\int\sec(x)dx</math> .
 +
 
 +
The trick to do this is to multiply and divide by the same thing like this:
 +
 
 +
:{|
 +
|<math>\int\sec(x)dx</math>
 +
|<math>=\int\sec(x)\frac{\sec(x)+\tan(x)}{\sec(x)+\tan(x)}dx</math>
 +
|-
 +
|
 +
|<math>=\int\frac{\sec^2(x)+\sec(x)\tan(x)}{\sec(x)+\tan(x)}dx</math>
 +
|}
 +
 
 +
Making the substitution <math>u=\sec(x)+\tan(x)</math> so <math>du=\sec(x)\tan(x)+\sec^2(x)dx</math> ,
 +
 
 +
:{|
 +
|<math>\int\sec(x)dx</math>
 +
|<math>=\int\frac{du}{u}</math>
 +
|-
 +
|
 +
|<math>=\ln|u|+C</math>
 +
|-
 +
|
 +
|<math>\ln\Big|\sec(x)+\tan(x)\Big|+C</math>
 +
|}
 +
 
 +
===More trigonometric combinations===
 +
<blockquote style="background: white; border: 1px solid black; padding: 1em;">
 +
For the integrals <math>\int\sin(nx)\cos(mx)dx</math> or <math>\int\sin(nx)\sin(mx)dx</math> or <math>\int\cos(nx)\cos(mx)dx</math>
 +
use the [[Calculus/Table_of_Trigonometry|identities]]
 +
*<math>\sin(a)\cos(b)=\frac{\sin(a+b)+\sin(a-b)}{2}</math>
 +
*<math>\sin(a)\sin(b)=\frac{\cos(a-b)-\cos(a+b)}{2}</math>
 +
*<math>\cos(a)\cos(b)=\frac{\cos(a-b)+\cos(a+b)}{2}</math>
 +
</blockquote>
 +
 
 +
====Example 1====
 +
Find <math>\int\sin(3x)\cos(5x)dx</math> .
 +
 
 +
We can use the fact that <math>\sin(a)\cos(b)=\frac{\sin(a+b)+\sin(a-b)}{2}</math> , so
 +
:<math>\sin(3x)\cos(5x)=\frac{\sin(8x)+\sin(-2x)}{2}</math>
 +
Now use the oddness property of <math>\sin(x)</math> to simplify
 +
:<math>\sin(3x)\cos(5x)=\frac{\sin(8x)-\sin(2x)}{2}</math>
 +
And now we can integrate
 +
:{|
 +
|<math>\int\sin(3x)\cos(5x)dx</math>
 +
|<math>=\int\Big(\frac{\sin(8x)-\sin(2x)}{2}\Big)dx</math>
 +
|-
 +
|
 +
|<math>=\frac{\cos(2x)}{4}-\frac{\cos(8x)}{16}+C</math>
 +
|}
 +
 
 +
====Example 2====
 +
Find:<math>\int\sin(x)\sin(2x)dx</math> .
 +
 
 +
Using the identities
 +
:<math>\sin(x)\sin(2x)=\frac{\cos(-x)-\cos(3x)}{2}=\frac{\cos(x)-\cos(3x)}{2}</math>
 +
Then
 +
:{|
 +
|<math>\int\sin(x)\sin(2x)dx</math>
 +
|<math>=\frac{1}{2}\int\Big(\cos(x)-\cos(3x)\Big)dx</math>
 +
|-
 +
|
 +
|<math>=\frac{\sin(x)}{2}-\frac{\sin(3x)}{6}+C</math>
 +
|}
 +
 
 +
 
 +
 
 +
==Resources==
 +
*[https://youtu.be/Sv-bSbAQeXc Trigonometric Integrals Involving Powers of Sine and Cosine - Part 1] by James Sousa
 +
 
 +
*[https://youtu.be/vPnuigP8I6I Trigonometric Integrals Involving Powers of Sine and Cosine - Part 2] by James Sousa
 +
 
 +
*[https://youtu.be/RGaDMqhOg8Y Trigonometric Integrals Involving Powers of Secant and Tangent - Part 1] by James Sousa
 +
 
 +
*[https://youtu.be/o8sIHlS17qc Trigonometric Integrals Involving Powers of Secant and Tangent - Part 1] by James Sousa
 +
 
 +
*[https://youtu.be/lTqnlihOC4o Trigonometric Integrals - Part 1 of 6] by patrickJMT
 +
 
 +
*[https://youtu.be/zyg9k1je7Fg Trigonometric Integrals - Part 2 of 6] by patrickJMT
 +
 
 +
*[https://youtu.be/BhJ4soojyAQ Trigonometric Integrals - Part 3 of 6] by patrickJMT
 +
 
 +
*[https://youtu.be/8CHHY-2Ctug Trigonometric Integrals - Part 4 of 6] by patrickJMT
 +
 
 +
*[https://youtu.be/QdNScjd5bno Trigonometric Integrals - Part 5 of 6] by patrickJMT
 +
 
 +
*[https://youtu.be/m3zG7c52QR4 Trigonometric Integrals - Part 6 of 6] by patrickJMT
 +
 
 +
*[https://youtu.be/WYhyq_mTCZs Trigonometric integrals - sin^mcos^n, odd m] by Kriata King
 +
 
 +
*[https://youtu.be/RRDiT-djQPk Trigonometric integrals - sin^mcos^n, odd n] by Kriata King
 +
 
 +
*[https://youtu.be/rpbr2nH7lNY Trigonometric integrals - sin^mcos^n, m and n even] by Kriata King
 +
 
 +
*[https://youtu.be/CK2SfrzF_c4 Integrals of trigonometric functions, tan^msec^n, even n] by Krista King
 +
 
 +
*[https://youtu.be/0TuZSSah5hc Integrals of trigonometric functions, tan^msec^n, odd m] by Krista King

Revision as of 00:57, 9 October 2021

When the integrand is primarily or exclusively based on trigonometric functions, the following techniques are useful.

Powers of Sine and Cosine

We will give a general method to solve generally integrands of the form . First let us work through an example.

Notice that the integrand contains an odd power of cos. So rewrite it as

We can solve this by making the substitution so . Then we can write the whole integrand in terms of by using the identity

.

So

This method works whenever there is an odd power of sine or cosine.

To evaluate when either or is odd.

  • If is odd substitute and use the identity .
  • If is odd substitute and use the identity .

Example

Find .

As there is an odd power of we let so . Notice that when we have and when we have .

When both and are even, things get a little more complicated.

To evaluate when both and are even.


Use the identities and .

Example

Find .

As and we have

and expanding, the integrand becomes

Using the multiple angle identities

TODO: CORRECT FORMULA

then we obtain on evaluating

Powers of Tan and Secant

To evaluate .

  1. If is even and then substitute and use the identity .
  2. If and are both odd then substitute and use the identity .
  3. If is odd and is even then use the identity and apply a reduction formula to integrate , using the examples below to integrate when .

Example 1

Find .

There is an even power of . Substituting gives so


Example 2

Find .

Let so . Then


Example 3

Find .

The trick to do this is to multiply and divide by the same thing like this:

Making the substitution so ,

More trigonometric combinations

For the integrals or or use the identities

Example 1

Find .

We can use the fact that , so

Now use the oddness property of to simplify

And now we can integrate

Example 2

Find: .

Using the identities

Then


Resources