MODULE 6.2 - EXPONENTIAL AND LOGARITHMIC EQUATIONS

LEARNING OBJECTIVES

In this section, you will:

- Use like bases to solve exponential equations.
- Use logarithms to solve exponential equations.
- Use the definition of a logarithm to solve logarithmic equations.
- Use the one-to-one property of logarithms to solve logarithmic equations.
- Solve applied problems involving exponential and logarithmic equations.

USING LIKE BASES TO SOLVE EXPONENTIAL EQUATIONS

• State the definition of the one-to-one property of exponential functions to solve exponential equations.

How To... Given an exponential equation with unlike bases, use the one-to-one property to solve it.

SOLVING EXPONENTIAL EQUATIONS USING LOGARITHMS

How To... Given an exponential equation in which a common base cannot be found, solve for the unknown.

USING THE DEFINITION OF A LOGARITHM TO SOLVE LOGARITHMIC EQUATIONS

• State the definition for using a logarithm to solve logarithmic equations.

USING THE ONE-TO-ONE PROPERTY OF LOGARITHMS TO SOLVE LOGARITHMIC EQUATIONS

• State the definition for using the one-to-one property of logarithms to solve logarithmic equations.

How To ... Given an equation containing logarithms, solve it using the one-to-one property.

MODULE 6.2 - CLASS EXAMPLES

Solve the exponential equations below.

1,
$$5^{2x} = 5^{3x+2}$$

2. $5^{2x} = 25^{3x+2}$
3. $5^x = \sqrt{5}$
4. $2^x = 3^{x+1}$
5. $3e^{0.5t} = 11$
6. $3 + e^{2t} = 7e^{2t}$

Solve the logarithmic equations below.

7.
$$6 + \ln(x) = 10$$

8. $2\ln(x+1) = 10$

9.
$$log_7(x + 12) = log_7(12x)$$
 10. $2 log(8n + 4) + 6 = 10$ 11. $ln(x - 2) - ln(x) = ln(54)$