
Module 9.2 - Linear Programming 

Wouldn’t it be nice if we could simply produce and sell infinitely many units of a 
product and thus make a never-ending amount of money? In business (and in day-to-day 
living) we know that some things are just unreasonable or impossible. Instead, our hope 
is to maximize or minimize some quantity, given a set of constraints. 

In order to have a linear programming problem, we must have: 

 Constraints, represented as inequalities
 An objective function, that is, a function whose value we either want to be as large

as possible (want to maximize it) or as small as possible (want to minimize it).

Example 1 
A company produces a basic and premium version of its product.  The basic version 
requires 20 minutes of assembly and 15 minutes of painting.  The premium version 
requires 30 minutes of assembly and 30 minutes of painting.  If the company has 
staffing for 3,900 minutes of assembly and 3,300 minutes of painting each week.  They 
sell the basic products for a profit of $30 and the premium products for a profit of $40.  
How many of each version should be produced to maximize profit? 

Let b = the number of basic products made, and p = the number of premium products 
made.  Our objective function is what we’re trying to maximize or minimize.  In this 
case, we’re trying to maximize profit.  The total profit, P, is 

30 40P b p 

In the last section, the example developed our constraints.  Together, these define our 
linear programming problem: 

Objective function: 30 40P b p 
Constraints: 
20 30 3900
15 30 3300

b p

b p

 
 
0, 0b p   

In this section, we will approach this type of problem graphically.  We start by graphing 
the constraints to determine the feasible region – the set of possible solutions.  Just 
showing the solution set where the four inequalities overlap, we see a clear region. 
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To consider how the objective function connects, suppose we considered all the 
possible production combinations that gave a profit of P = $3000, so that 
3000 30 40b p  .  That set of combinations would form a line in the graph.  Doing the 
same for a profit of $5000 and $6500 would give additional lines.  Graphing those on 
top of our feasible region, we see a pattern: 

Notice that all the constant-profit lines are parallel, and that in general the profit 
increases as we move up to upper right.  Notice also that for a profit of $5000 there are 
some production levels inside the feasible region for that profit level, but some are 
outside.  That means we could feasibly make $5000 profit by producing, for example, 
167 basic items and no premium items, but we can’t make $5000 by producing 125 
premium items and no basic items because that falls outside our constraints.   

P=3000 

P=5000 

P=6500 
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The solution to our linear programming problem will be the largest possible profit that 
is still feasible.  Graphically, that means the line furthest to the upper-right that still 
touches the feasible region on at least point.  That solution is the one below: 

This profit line touches the feasible region where b = 195 and p = 0, giving a profit of 
30(195) 40(0) $5850P    . 

Notice that this is slightly larger than the profit that would be made by completely 
utilizing all staffing at b = 120, p = 50, where the profit would be $5600. 

The objective function along with the four corner points above forms a bounded linear 
programming problem. That is, imagine you are looking at three fence posts connected 
by fencing (black point and lines, respectively). If you were to put your dog in the 
middle, you could be sure it would not escape (assuming the fence is tall enough). If this 
is the case, then you have a bounded linear programming problem. If the dog could walk 
infinitely in any one direction, then the problem is unbounded. 

In the past example, you can see that the line of maximum profit will always touch the 
boundary of the feasible region.  That observation inspires the fundamental theorem of 
linear programming. 

Fundamental Theorem of Linear Programming 
 If a solution exists to a bounded linear programming problem, then it occurs at one

of the corner points.
 If a feasible region is unbounded, then a maximum value for the objective function

does not exist.
 If a feasible region is unbounded, and the objective function has only positive

coefficients, then a minimum value exists.
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In the last example we solve the problem somewhat intuitively by “sliding” the profit line 
up.  Typically we use a more procedural approach. 

Solving a Linear Programming Problem Graphically 
1. Define the variables to be optimized. The question asked is a good indicator as to

what these will be.
2. Write the objective function, first in words, then convert to a mathematical

equation
3. Write the constraints, first in words, then convert to mathematical inequalities
4. Graph the constraints inequalities, and shade the feasible region
5. Identify the corner points by solving systems of linear equations whose

intersection represents a corner point.
6. Test all corner points in the objective function. The “winning” point is the point

that optimizes the objective function (biggest if maximizing, smallest if
minimizing)

Try it Now 
1. Maximize 14 9P x y   subject to the constraints:

 
9

3 15
0, 0

x y

x y

x y

 
 
 

Example 2 
A health-food business would like to create a high-potassium blend of dried fruit in the 
form of a box of 10 fruit bars. It decides to use dried apricots, which have 407 mg of 
potassium per serving, and dried dates, which have 271 mg of potassium per serving. 
The company can purchase its fruit through in bulk for a reasonable price. Dried 
apricots cost $9.99/lb. (about 3 servings) and dried dates cost $7.99/lb. (about 4 
servings). The company would like the box of bars to have at least the recommended 
daily potassium intake of about 4700 mg, and contain at least 1 serving of each fruit. In 
order to minimize cost, how many servings of each dried fruit should go into the box of 
bars? 

We begin by defining the variables. Let 
x  = number of servings of dried apricots 
y = number of servings of dried dates 

We next work on the objective function.  

For apricots, there are 3 servings in one pound. This means that the cost per serving is 
$9.99/3 = $3.33. The cost for x servings would thus be 3.33x. 
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For dates, there are 4 servings per pound. This means that the cost per serving is 
$7.99/4 = $2.00. The cost for y servings would thus be 2.00y. 

The total cost, C, for apricots and dates would be 
C = 3.33x + 2.00y 

Normally we would have constraints x ≥ 0 and y ≥ 0 since negative servings can’t be 
used.  But in this case, we’re further restricted.  In words: 

 There must be at least 1 serving of each fruit
 The product must contain at least 4700 mg of potassium

Mathematically, 

 Since there must be at least 1 serving of each fruit, x ≥ 1 and y ≥ 1
 There are 407x mg of potassium in x servings of apricots and 271y mg of potassium

in y servings of dates. The sum should be greater than or equal to 4700 mg of
potassium, or 407 271 4700x y 

Thus we have, 
Objective function: C = 3.33x + 2.00y 
Constraints: 
407 271 4700x y   
x ≥ 1, y ≥ 1 

We graph the constraints and shade the feasible region: 

The region is unbounded, but we will be able to find a minimum still.  We can see there 
are two corner points. 
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The one in the upper left is the intersection of the lines 407 271 4700x y   and x = 1. 
Solving for the intersection using substitution: 
407(1) 271 4700

15.8
y

y

 


Point:  (1, 15.8) 

The one in the lower right is the intersection of the lines 407 271 4700x y   and y = 1.   
407 271(1) 4700

10.9
x

x

 


 

Point:  (10.9, 1) 

Testing the objective function at each of these corner points: 

The company can minimize cost by using 1 serving of apricots and 15.8 servings of 
dates. 

Try it Now 
2. A company makes two products.  Product A requires 3 hours of manufacturing and
1 hour of assembly.  Product B requires 4 hours of manufacturing and 2 hours of
assembly.  There are a total of 84 hours of manufacturing and 32 hours of assembly
available.  Determine the production to maximize profit if the profit on product A is
$50 and the profit on product B is $60.

Example 3 
A factory manufactures chairs and tables, each requiring the use of three operations: 
Cutting, Assembly, and Finishing. The first operation can be used at most 40 hours; the 
second at most 42 hours; and the third at most 25 hours. A chair requires 1 hour of 
cutting, 2 hours of assembly, and 1 hour of finishing; a table needs 2 hours of cutting, 1 
hour of assembly, and 1 hour of finishing.  If the profit is $20 per unit for a chair and 
$30 for a table, how many units of each should be manufactured to maximize profit? 

We begin by defining the variables. Let 
c  = number of chairs made 
t = number of tables made 

The profit, P, will be P = 20c + 30t. 

For cutting, c chairs will require 1c hours and t tables will require 2t hours.  We can use 
at most 40 hours, so 2 40c t  . 

Point Cost, C = 3.33x + 2.00y 

(10.9, 1) C = 3.33(10.9) + 2.00(1) = $38.30 
(1, 15.8) C = 3.33(1) + 2.00(15.8) = $34.96 
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For assembly, c chairs will require 2c hours and t tables will require 1t hours.  We can 
use at most 42 hours, so 2 42c t  . 

For finishing, c chairs will require 1c hours and t tables will require 1t hours.  We can 
use at most 25 hours, so 25c t  . 

Since we can’t produce negative items, 0, 0c t  . 

Graphing the constraints, we can see the feasible region. 

There are five corner points for this region. 
Point 1:  In the lower left, where t = 0 crosses c = 0.    Point: (0, 0) 

Point 2:  In the upper left, where c = 0 crosses 2 40c t  .     
Using substitution, 0 2 40t  , so t = 20. 
Point: (0, 20) 

Point 3:  In the lower right, where t = 0 crosses 2 42c t  .     
Using substitution, 2 0 42c   , so c = 21. 
Point: (21, 0) 

Point 4:  Where 2 40c t   crosses 25c t  . 
We can solve this as a system using any techniques we know. We could solve the 
second equation for c, giving 25c t  , then substitute into the first equation: 
(25 ) 2 40
25 40

15

t t

t

t

  
 


Then c = 25 – 15 = 10. 
Point:  (10, 15) 

Point 5:  Where 2 42c t   crosses 25c t  . 
We can solve this as a system using any techniques we know.  Using a different 
technique this time, we could multiply the bottom equation by -1 then add it to the first: 
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2 42
25

c t

c t

 
   

17c 

Then using 25c t  , we have 17 25t  , so t = 8. 
Point:  (17, 8) 

Testing the objective function at each of these corner points: 

The profit will be maximized by producing 10 chairs and 15 tables. 

Point Profit, P = 20c + 30t 

(0, 0) P = 20(0) + 30(0) = $0 
(0, 20) P = 20(0) + 30(20) = $600 
(21, 0) P = 20(21) + 30(0) = $420 
(10, 15) P = 20(10) + 30(15) = $650 
(17, 8) P = 20(17) + 30(8) = $580 
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Example 4 
A catering company is to make lunch for a business meeting. It will serve ham 
sandwiches, light ham sandwiches, and vegetarian sandwiches. A ham sandwich has 1 
serving of vegetables, 4 slices of ham, 1 slice of cheese, and 2 slices of bread. A light 
ham sandwich has 2 serving of vegetables, 2 slices of ham, 1 slice of cheese and 2 
slices of bread. A vegetarian sandwich has 3 servings of vegetables, 2 slices of cheese, 
and 2 slices of bread. A total of 10 bags of ham are available, each of which has 40 
slices; 18 loaves of bread are available, each with 14 slices; 200 servings of vegetables 
are available, and 15 bags of cheese, each with 60 slices, are available. Given the 
resources, how many of each sandwich can be produced if the goal is to maximize the 
number of sandwiches? 

We wish to maximize the number of sandwiches, so let: 
x = number of ham sandwiches 
y = number of light ham sandwiches 
z = number of vegetarian sandwiches 

The total number of sandwiches is given by: S x  y z

For the next examples we will focus on setting up the objective function and 
constraints and interpreting the solution, and omit the details of solving.   
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The constraints will be given by considering the total amount of ingredients available. 
That is, the company has a limited amount of ham, vegetables, cheese, and bread. 

In total, the company has 10 40   400  slices of ham, 1814  252  slices of bread, 

200 servings of vegetables, and 1560  900  slices of cheese available. At most, the 

company can use the above amounts. 

There are two sandwiches that use ham – the first requires 4 slices of ham and the 
second requires only 2, per sandwich, and the total number of slices of ham cannot 
exceed 400: 
4 2x y  40  0

Each sandwich requires 2 slices of bread so: 
2 2x y  2z  252  

The ham sandwiches have 1 and 2 servings of vegetables, respectively, and the 
vegetarian sandwich has 3 servings of vegetables. So, 
1x y 2 3 2z  0  0

Both ham sandwiches require one slice of cheese, and the vegetarian sandwich requires 
two slices of cheese, so, 
1 1x y  2z  900  

Our final setup is: 
Maximize: S x  y z
Subject to: 
4 2x y  400  
2 2x y  2z  252  
2 2x y  2z  252  

Solving this, we get 
Optimal Solution: S  = 126; x = 100, y = 0, z = 26 

We find that 100 ham sandwiches, 26 vegetarian sandwiches, and 0 light ham 
sandwiches should be made to maximize the total number of sandwiches made. 

Notice that this will effectively use up all of the bread, which is the first to go. 



Example 5 
A factory manufactures three products, A, B, and C. Each product requires the use of 
two machines, Machine I and Machine II. The total hours available, respectively, on 
Machine I and Machine II per month are 180 and 300. The time requirements and profit 
per unit for each product are listed below. 

How many units of each product should be manufactured to maximize profit, and what 
is the maximum profit? 

As usual, we start by defining our variables: 
A = number of units of product A manufactured 
B = number of units of product B manufactured 
C = number of units of product B manufactured 

We are trying to maximize profit.  Producing A units of item A will result in a profit of 
20A, producing B units of item B will profit 30B, and C units of item C will profit 40C, 
giving our objective function: 

20P A  30B 40 C

B A C 
Machine I  2 2 1 
Machine II  2 4 2 
Profit 20 30 40 

Next we consider the time available on each machine to establish constraints.  
Producing A units of item A will require 1A  hours on Machine 1, producing B units of 
item B will require 2B  hours, and producing C units of item C will require 2C hours.  
Together these need to not exceed the 180 hours available.  This leads to the constraint: 
1 2A B  2C 18  0

We can construct a similar constraint using the hours on Machine 2: 
A B2 2 4  C  30  0

Our final setup is: 
Maximize 20P A  30B 40 C
Subject to: 
1 2A B  2C 18  0

A B2 2 4  C  30  0
0,A B  0,C 0

Solving this: 
Optimal Solution: P  = 3300; A  = 120, B = 30, C = 0 

We will maximize profit at $3300 by  producing 120 units of item A, 30 units of item B, 
and no units of item C. 

In addition to maximization problems, linear programming can also be used to solve 
minimization problems.  When done by-hand, these would require a modification of the 
Simplex method shown in the last section, but these problems can be solved by most 
technologic methods. 
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Example 6 
A company is creating a meal replacement bar.  They plan to incorporate peanut butter, 
oats, and dried cranberries as the primary ingredients.  The nutritional content of 10 
grams of each is listed below, along with the cost, in cents, of each ingredient.  Find the 
amount of each ingredient they should use to minimize the cost of producing a bar 
containing a minimum of 15g of each ingredient, at least 10g of protein and at most 14g 
of fat. 

We start by introducing variables: 
p = number of 10g servings of peanut butter 
a = number of 10g servings of oats 
c = number of 10g servings of cranberries 

Peanut Butter, 10g Oats, 10g Cranberries, 10g 
Protein (grams) 2.5 1.7 0 
Fat (grams) 5 0.7 0.1 
Cost (cents) 6 1 2 

The total cost, C, of producing the bar, in cents, will be C = 6p + 1a + 2c. 

Our first constraints come from the requirement for 15g of each ingredient, which is 1.5 
servings (1.5 servings at 10g per serving = 15g).  Constructing those constraints: 

1.5,p a 1.5, c 1.5  

Next we look at the nutritional components.  For protein, p servings of peanut butter 
will contain 2.5p grams of protein. Likewise, a servings of oats will have 1.7a grams of 
protein, and c servings of cranberries will have 0c grams of protein.  Together, these 
need to be at least 10 grams, giving the constraint 
2.5 1.7p a  0c 1 0  

We can construct a similar constraint for fat, in this case noting we want the fat to be at 
most 14g: 
5 0p a.7  0.1c 1  4

We can now have our complete problem: 
Minimize C = 6p + 1a + 2c 
Subject to: 
2.5 1.7p a  0c 1 0  
5 0p a.7  0.1c 1  4

1.5,p a 1.5, c 1.5  

Turning to technology, we get a solution: 
Optimal Solution: C  = 15.6765; p  = 1.5, a  = 3.67647, c = 1.5 

Interpreting that result, the minimum cost of to produce the bar will be about 15.7 
cents, by using 15 grams  of peanut butter, 36.8 grams of oats, and 15 grams of dried 
cranberries. 

Verifying our conditions, we can see that our recipe contains at least 1.5 servings of 
each ingredient.  The protein content will be 2.5(1.5) 1.7(3.68) 0(1.5) 10 grams.  
The fat content will be 5(1.5)  0.7(3.68) 0.1(1.5) 10.2 grams. 
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In some cases we have to be clever with how we create our constraints to maintain the 
correct form of a linear programming problem while still meeting the requirements of the 
actual application. 

Example 4 
A distribution company needs to ship products from its two warehouses to three 
retailers.  Warehouse A has 1000 products in stock, and Warehouse B has 1200 
products.  Retailer 1 needs 700 products, Retailer 2 needs 500 products, and Retailer 3 
needs 600 products The cost to ship a product from each warehouse to each retailer is 
shown below.  Find the number of products the company should ship from each 
warehouse to each retailer to minimize shipping costs. 

To start this problem, we first need to define our variables.  Since there are six different 
routes, we will need to define six variables: 
A1 = the number of products shipped from Warehouse A to Retailer 1 
B1 = the number of products shipped from Warehouse B to Retailer 1 
A2 = the number of products shipped from Warehouse A to Retailer 2 
We can similarly define variables B2, A3, and B3. 

Our objective function is the total shipping cost.  Shipping A1 items from Warehouse A 
to Retailer 1 will cost $3 per item, so a total cost of 3A1.  Doing the same for the other 
variables gives our total cost equation: 

1 1 2 2 3 33 4 5 7 8 5C A B A B A B       

We know that Warehouse A has 1000 products in stock, so the total number of items 
shipped out of Warehouse A needs to be no more than 1000.  Likewise Warehouse B 
can’t ship more than 1200 items.  These give the constraints: 

1 2 3 1000A A A    

1 2 3 1200B B B    

Retailer 1 needs 700 products.  While is technically a strict equality, we can set it up as 
an inequality, indicating the total number of product arriving at retailer 1 needs to be at 
least 700 products.  Since we’re minimizing cost, there’s no way we’d end up shipping 
more than 700 items to the retailer.  Setting up this constraint, and similar ones for the 
other three retailers: 

1 1 700A B 

2 2 500A B   

3 3 600A B   

Retailer 1 Retailer 2 Retailer 3
Warehouse A 3 5 6
Warehouse B 4 7 5
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Our final problem setup is: 

Minimize 1 1 2 2 3 33 4 5 7 8 5C A B A B A B       

Subject to: 

1 2 3 1000A A A    

1 2 3 1200B B B    

1 1 700A B 

2 2 500A B   

3 3 600A B   

1 1 2 2 3 30, 0, 0, 0, 0, 0A B A B A B       

Solving this, we get the solution: 
Optimal Solution: C = 7800; A1 = 500, B1 = 200, A2 = 500, B2 = 0, A3 = 0, B3 = 600 

Try it Now 
3. A diet is to contain at least 2400 units of vitamins, 1800 units of minerals, and 1200
calories. Two foods, Food A and Food B are to be purchased. Each unit of Food A
provides 50 units of vitamins, 30 units of minerals, and 10 calories. Each unit of Food
B provides 20 units of vitamins, 20 units of minerals, and 40 calories. If Food A costs
$2 per unit and Food B cost $1 per unit, how many units of each food should be
purchased to keep costs at a minimum?
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