\qquad

MODULE 6.1-LOGARITHMIC PROPERTIES

LEARNING OBJECTIVES

In this section, you will:

- Use the product rule for logarithms.
- Use the quotient rule for logarithms.
- Use the power rule for logarithms.
- Expand logarithmic expressions.
- Condense logarithmic expressions.
- Use the change-of-base formula for logarithms.

USING THE PRODUCT RULE

- State the definition of the product rule for logarithms.

USING THE QUOTIENT RULE

- State the definition of the quotient rule for logarithms.

USING THE POWER RULE

- State the definition of the power rule for logarithms.

CONDENSING LOGARITHMIC EXPRESSIONS

How To... Given a sum, difference, or product of logarithms with the same base, write an equivalent expression (as a single logarithm.

USING THE CHANGE-OF-BASE FORMULA FOR LOGARITHMS

- State the definition of the change-of-base formula.

MODULE 3.1-CLASS EXAMPLES

Use the Product Rule of Logarithms to expand or condense the following logarithm as much as possible.

1. $\log _{5}(3 x)$
2. $\log _{3}(30 x(3 x+4))$
3. $\log _{b}(7)+\log _{b}(y)$
4. $\log (15)+\log (2+4 z)$

Use the Quotient Rule of Logarithms to expand or condense the following logarithm as much as possible.
5. $\log \left(\frac{7}{b}\right)$
6. $\log _{2}\left(\frac{15 x(x-1)}{(3 x+4)(2-x)}\right)$
7. $\log _{9}(w)-\log _{9}(5)$
8. $\ln (v+1)-\ln (x-9)$

Use the Power Rule of Logarithms to expand or condense the following logarithm as much as possible.
9. $\log _{2}\left(x^{5}\right)$
10. $\ln \left(\frac{1}{x^{2}}\right)$
11. $7 \log _{4}(y)$
12. $\frac{1}{2} \log _{3}(w)$

Use the properties of logarithms to expand or condense the logarithm as much as possible.
13. $\log \left(\frac{x^{2} y^{3}}{z^{4}}\right)$
14. $\ln \sqrt[3]{x^{2}}$
15. $\ln \left(x^{2}+y^{2}\right)$
16. $\ln \left(\frac{\sqrt{(x-1)(2 x+1)^{2}}}{x^{2}-9}\right)$
17. $\log (3)-\log (4)+\log (5)-\log (6)$
18. $\log (5)+0.5 \log (x)-\log (7 x-1)-3 \log (x-1)$
19. $\log (5)+0.5 \log (x)-\log (7 x-1)-3 \log (x-1)$

For the following exercises, use the properties of logarithms to evaluate without using a calculator.
20. $\log _{2}(4)-\log _{2}\left(\frac{1}{8}\right)$
21. $2 \log _{16}(4)+\log _{16}\left(\frac{1}{256}\right)$

For the following exercises, rewrite the expression as an equivalent ration of logs using base e.
22. $\log _{7}(15)$
23. $\log _{3}(22)$

