$\qquad$

## MODULE 5.2-LOGARITHMIC FUNCTIONS

## LEARNING OBJECTIVES

In this section, you will:

- Convert from logarithmic to exponential form.
- Convert from exponential to logarithmic form.
- Evaluate logarithms.
- Use common logarithms.
- Use natural logarithms.


## CONVERTING FROM LOGARITHMIC TO EXPONENTIAL FORM

- State the definition of the logarithmic function.

How $\tau \circ$... Given an equation in $\operatorname{logarithmic~form~} \log _{b} x=y$, convert it to exponential form.

## EVALUATING LOGARITHMS

How To... Given a logarithm of the form $y=\log _{b} x$, evaluate it mentally.


## USING COMMON LOGARITHMS

- State the definition of the common logarithm


## USING NATURAL LOGARITHMS

- State the definition of the natural logarithm


## MODULE 5.2 - CLASS EXAMPLES

Write the following logarithmic equations in exponential form.

1. $\log _{5}(25)=2$
2. $\log (1,000,000)=6$

Write the following exponential equations in logarithmic form.
3. $3^{2}=9$
4. $2^{-1}=\frac{1}{2}$

Solve the following
5. $\log _{121}(11)=x$
6. $\log _{2}\left(\frac{1}{32}\right)=y$
7. $\log _{4}(\sqrt[7]{4})=z$
8. $\log _{3}(-9)=t$
9. $\log _{14}(1)=x$
10. $\log _{2}(4)=w$
$11 \cdot \log (1000)=w$
12. $\log \left(100^{8}\right)=x$
13. $10^{\log (31)}=z$
14. $\ln (500)=y$
15. $\ln \left(e^{4}\right)=d$
16. $e^{\ln (1537)}=u$

For the following, solve for $x$ by converting the logarithmic equation to exponential form
17. $\log _{2}(x)=-3$

For the following exercises, evaluate the base $b$ logarithmic expression without using a calculator.
18. $\log _{2}\left(\frac{1}{8}\right)+4$
19. $6 \cdot \log _{8}(4)$

