Infinite Limits and Vertical Asymptotes

ex. $2 f(x)=\frac{1}{x^{2}}$. Examine the behavior of this function.

First, list some things you know about this function.

1. It is a rational function with domain $(-\infty, 0) \cup(0, \infty)$.
2. The function is undefined at $x=0$.
3. $\frac{1}{x^{2}}>0$ for all x in the domain. This means the range of f is $(0, \infty)$

We need to see what the function values are doing near $x=0$ (the place where f is undefined)
Limit from the left at zero: $\lim _{x \rightarrow 0^{-}} \frac{1}{x^{2}}=+\infty$
Limit from the right at zero: $\lim _{x \rightarrow 0^{+}} \frac{1}{x^{2}}=+\infty$

To determine this without knowing what the graph looks like, you can determine some function values when x is very close to zero but to the left and to the right of zero.

x	$y=\frac{1}{x^{2}}$
-0.1	100
-0.01	10,000
-0.001	$1,000,000$
0	undefined
0.001	$1,000,000$
0.01	10,000
0.1	100

About the notation: When we write $\lim _{x \rightarrow c} f(x)=\infty$, we mean that the values of the function, $f(x)$, can be made as large as we like by taking x to be sufficiently close to c.
ex. $3 f(x)=\frac{1}{x}$. Examine the behavior of this function.

Notice that this function is defined for all real numbers x except zero. How does the function behave near zero?

Limit from the left at zero: $\lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty$.
Think about it this way. When x is very small and negative, $\frac{1}{x}$ will be very large and negative.

Limit from the right at zero: $\lim _{x \rightarrow 0^{-}} \frac{1}{x}=+\infty$.
Think about it this way. When x is very small and positive, $\frac{1}{x}$ will be very large and positive.

