Concept of the Limit of a Function

Moving from zero to one on the real number line

Suppose I want to get from 0 to 1 on the real number line. I devise a scheme in which each time I move toward 1 from 0 , I travel $\frac{1}{2}$ the distance remaining. See picture.

One way to look at this is to say that I can get as close to one as I like by repeating this procedure a large number of times.

You would say that I am approaching the number one. This number that we are approaching is called the limit.

Example involving the limit of a function.

A used car salesman earns a monthly salary of $\$ 1200.00$ and a commission of 10% on the amount of sales they generate in a given month.

We can describe the salesman's monthly earnings as a function of the amount they generate in sales using the equation,

$$
y=0.1 x+1200
$$

where y is the monthly earnings and x is the amount in sales.

Let's say we want to know what value the monthly earnings will approach as the amount generated in sales approaches $\$ 75,000$. We can make a table of values and investigate:

$x=$ amount generated from sales that month	$y=0.1 x+1200$ amount earned in that month
0	$0.1(0)+1200=1200$
25,000	$0.1(25,000)+1200=3700$
50,000	$0.1(50,000)+1200=6200$
70,000	$0.1(70,000)+1200=8200$
74,000	$0.1(74,000)+1200=8600$
74,900	$0.1(74,900)+1200=8690$
74,999	$0.1(74,999)+1200=8699.99$
75,001	
75,100	$0.1(75,001)+1200=8700.10$
76,000	$0.1(75,100)+1200=8710$
	$0.1(76,000)+1200=8800$

Can you guess what numbers should go in the blank line above?

We see that as the values of x approach 75,000 , the values of y approach 8,700 .

Symbolically we write,

$$
\lim _{x \rightarrow 75,000} 0.1 x+1200=8700
$$

More examples involving the limit of a function.

ex. $1 y=x+1$, The identity function shifted up one unit.

$\lim _{x \rightarrow 1} x+1=2$
ex. $2 y=\frac{x^{2}-1}{x-1}$, This is a rational function whose graph has a hole at $x=1$

$\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=2$

When looking at $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}$ we are asking the question, "what are the values of the function $y=\frac{x^{2}-1}{x-1}$ getting close to when the values of x are getting close to 1 ?".

We do not necessarily care what is happening at $x=1$, only what is happening when x is close to 1 .
ex. $3 f(x)=\left\{\begin{array}{ll}0 & \text { if } x \leq 0 \\ 1 & \text { if } x>0\end{array}, \quad\right.$ a unit step function. This function has a jump at $x=0$.

When $x \rightarrow 0$ from the right, the values of the function are approaching 1.

When $x \rightarrow 0$ from the left, the values of the function are approaching 0 .

Since the values of the function are not approaching a single value as $x \rightarrow 0$ we say that the limit does not exist.
ex. $4 f(x)=\frac{1}{x}, \quad$ the reciprocal function. This function has a vertical asymptote at $x=0$

When $x \rightarrow 0$ from the right, the values of the function are growing without bound (i.e. $f(x) \rightarrow+\infty$).

When $x \rightarrow 0$ from the left, the values of the function are decreasing without bound (i.e. $f(x) \rightarrow-\infty$).

Therefore, $\lim _{x \rightarrow 0} \frac{1}{x}$ does not exist.
ex. $5 \quad f(x)=\sin \left(\frac{1}{x}\right)$. This function has "too many wiggles" near $x=0$

This function assumes the values of -1 and +1 infinitely often near $x=0$.

Since the function values are not approaching a single number, the limit does not exist as $x \rightarrow 0$.
Although the function above does not approach a limiting value as $x \rightarrow 0$, the following related functions do approach a limiting value as $x \rightarrow 0$:
$f(x)=x \sin \left(\frac{1}{x}\right)$

$$
f(x)=x^{2} \sin \left(\frac{1}{x}\right)
$$

$\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0$

$\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)=0$
$f(x)=|x| \sin \left(\frac{1}{x}\right)$

$\lim _{x \rightarrow 0}|x| \sin \left(\frac{1}{x}\right)=0$

Techniques for finding the limit of a function if it exist

1. We can show that $\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)=0$ using the Squeeze Theorem (also called the Sandwich Theorem).

The idea is to get the values of the function you are working on between two other functions whose values approach a limit as $x \rightarrow 0$.

Start by noticing that,

$$
-1 \leq \sin \left(\frac{1}{x}\right) \leq 1
$$

We can multiply the inequality by x^{2} (which is positive) and get,

$$
-x^{2} \leq x^{2} \sin \left(\frac{1}{x}\right) \leq x^{2}
$$

Since $-x^{2} \rightarrow 0$ as $x \rightarrow 0$ and $x^{2} \rightarrow 0$ as $x \rightarrow 0$, we conclude that $x^{2} \sin \left(\frac{1}{x}\right) \rightarrow 0$ as $x \rightarrow 0$

Exercises

Use the Squeeze theorem to show that:
a. $\lim _{x \rightarrow 0} x^{4} \cos \left(\frac{2}{x}\right)=0$
b. $\lim _{x \rightarrow 0^{+}} \sqrt{x} e^{\sin (\pi / x)}=0$

2. Limit Laws

a. The limit of a sum is the sum of the limits, provided the limits exist:

$$
\lim _{x \rightarrow c}[f(x)+g(x)]=\lim _{x \rightarrow c} f(x)+\lim _{x \rightarrow c} g(x)
$$

b. The limit of a product is the product of the limits, provided the limits exist:

$$
\lim _{x \rightarrow c}[f(x) \cdot g(x)]=\lim _{x \rightarrow c} f(x) \cdot \lim _{x \rightarrow c} g(x)
$$

c. The limit of a constant times a function is the constant times the limit of the function, provided the limit exists:

$$
\lim _{x \rightarrow c} k \cdot f(x)=k \cdot \lim _{x \rightarrow c} f(x)
$$

d. The limit of the quotient of two functions is the quotient of the limit of the functions, provided the limit exists and the limit of the denominator is not zero:

$$
\lim _{x \rightarrow c}\left[\frac{f(x)}{g(x)}\right]=\frac{\lim _{x \rightarrow c} f(x)}{\lim _{x \rightarrow c} g(x)}
$$

e. Raising a function to a power then taking the limit is the same as taking the limit of the function then raising it to a power:

$$
\lim _{x \rightarrow c}[f(x)]^{n}=\left[\lim _{x \rightarrow c} f(x)\right]^{n}
$$

f. This one we can not do without...

$$
\lim _{x \rightarrow c} x=c
$$

g. The limit of a constant is that constant

$$
\lim _{x \rightarrow c} k=k
$$

where k is constant.
3. Substitution. Limits of polynomials can be found by substitution and limits of rational functions can be found by substitution if the limit of the denominator is not zero.
ex. $1 \lim _{x \rightarrow 2} x^{3}+5 x^{2}+3=(2)^{3}+5(2)^{2}+3=31$

In doing this we are really using a bunch of the limits laws.
$\lim _{x \rightarrow 2} x^{3}+5 x^{2}+3$
$=\lim _{x \rightarrow 2} x^{3}+\lim _{x \rightarrow 2} 5 x^{2}+\lim _{x \rightarrow 2} 3$
$=\left[\lim _{x \rightarrow 2} x\right]^{3}+5\left[\lim _{x \rightarrow 2} x\right]^{2}+3$
$=(2)^{3}+5(2)^{2}+3=31$
ex. $2 \lim _{x \rightarrow-1} \frac{2 x^{2}-1}{x+3}=\frac{2(-1)^{2}-1}{-1+3}=\frac{1}{2}$

Here is how we are using the limit laws in this problem:
$\lim _{x \rightarrow-1} \frac{2 x^{2}-1}{x+3}$
$=\frac{\lim _{x \rightarrow-1} 2 x^{2}-1}{\lim _{x \rightarrow-1} x+3}$
$=\frac{2\left[\lim _{x \rightarrow-1} x\right]^{2}-\lim _{x \rightarrow-1} 1}{\lim _{x \rightarrow-1} x+\lim _{x \rightarrow-1} 3}$
$=\frac{2(-1)^{2}-1}{-1+3}=\frac{1}{2}$

Eliminating a denominator whose limit is zero

ex. 3 Determine the following limit: $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}$

When we try to use substitution we get

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\frac{(2)^{2}-4}{2-2}=\frac{0}{0}
$$

which is undefined.

Instead, we use algebra to eliminate the denominator:

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{x-2}=\lim _{x \rightarrow 2} x+2=4
$$

ex. 4 Determine the following limit: $\lim _{x \rightarrow-3} \frac{x^{2}+9 x+18}{x^{2}-x-12}$
When we try to use substitution we get $\lim _{x \rightarrow-3} \frac{x^{2}+9 x+18}{x^{2}-x-12}=\frac{0}{0}$ which is again undefined.

Use algebra:
$\lim _{x \rightarrow-3} \frac{x^{2}+9 x+18}{x^{2}-x-12}$
$=\lim _{x \rightarrow-3} \frac{(x+3)(x+6)}{(x+3)(x-4)}$
$=\lim _{x \rightarrow-3} \frac{x+6}{x-4}=\frac{-3+6}{-3-4}=-\frac{3}{7}$
ex. 5 Determine the following limit: $\lim _{h \rightarrow 0} \frac{\sqrt{h+2}-\sqrt{2}}{h}$

We will multiply by the conjugate of the numerator to get,

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{\sqrt{h+2}-\sqrt{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{h+2}-\sqrt{2}}{h} \cdot \frac{\sqrt{h+2}+\sqrt{2}}{\sqrt{h+2}+\sqrt{2}} \\
& =\lim _{h \rightarrow 0} \frac{h+2-2}{h(\sqrt{h+2}+\sqrt{2})} \\
& =\lim _{h \rightarrow 0} \frac{1}{\sqrt{h+2}+\sqrt{2}} \\
& =\frac{1}{\sqrt{0+2}+\sqrt{2}} \\
& =\frac{1}{2 \sqrt{2}}
\end{aligned}
$$

