One Sided Limits (Left and Right Hand Limits)

Notation:

$$
\lim _{x \rightarrow c^{-}} f(x)=L
$$

means that as x gets very close to c from the left of c, the values of the function, get very close to L.

$$
\lim _{x \rightarrow c^{+}} f(x)=L
$$

means that as x gets very close to c from the right of c, the values of the function, get very close to L.

Example: The function $f(x)$ is graphed below, Determine each limit.

a. $\lim _{x \rightarrow-5^{-}} f(x)=4$
b. $\lim _{x \rightarrow-5^{+}} f(x)=2$
c. $\lim _{x \rightarrow-3^{-}} f(x)=-2$
d. $\lim _{x \rightarrow-3^{+}} f(x)=-2$
e. $\lim _{x \rightarrow 2^{-}} f(x)=-2$
f. $\lim _{x \rightarrow 2^{+}} f(x)=2$
g. $\lim _{x \rightarrow 4^{-}} f(x)=2$
h. $\lim _{x \rightarrow 4^{+}} f(x)=2$

Theorem: $\quad \lim _{x \rightarrow c} f(x)=L \quad \Leftrightarrow \quad \lim _{x \rightarrow c^{-}} f(x)=L$ and $\lim _{x \rightarrow c^{+}} f(x)=L$

This says that as $x \rightarrow c$, the limit of the function exists and is equal to L if and only if the limits from the left and from the right exist and are both equal to L.
ex. 1 The Heaviside function (or Unit Step function). Think of turning on a light.
$f(x)= \begin{cases}0 & \text { if } x<0 \\ 1 & \text { if } x \geq 0\end{cases}$

The limit from the left at zero: $\lim _{x \rightarrow 0^{-}} f(x)=0$

The limit from the right at zero: $\lim _{x \rightarrow 0^{+}} f(x)=1$

Since the limits from the left and right are not equal, $\lim _{x \rightarrow 0} f(x)$ does not exist

