MAT 1214: CALCULUS I ONE SIDED LIMITS AND THE DEFINITION OF A LIMIT

(1) Sketch the graph and find the requested limits: $\quad f(x)= \begin{cases}\sqrt{9-x^{2}} & 0 \leq x<3 \\ 3-x & 3 \leq x<6 \\ 3 & x=6\end{cases}$
(a) $\lim _{x \rightarrow 0^{+}} f(x)=$ \qquad -
(b) For $c \in(0,3)$, find $\lim _{x \rightarrow c} f(x)=$ \qquad .
(c) $\lim _{x \rightarrow 3^{-}} f(x)=$ \qquad .
(d) $\lim _{x \rightarrow 3^{+}} f(x)=$ \qquad .
(e) $\lim _{x \rightarrow 3} f(x)=$ \qquad .
(f) For $c \in(3,6)$, find $\lim _{x \rightarrow c} f(x)=$ \qquad .
(g) $\lim _{x \rightarrow 6^{-}} f(x)=$ \qquad .
(2) Find the following one-sided limits:
(a) $\lim _{x \rightarrow-1^{+}}\left(\frac{x}{x+3}\left(\frac{4 x+8}{x^{2}+3 x}\right)\right)=$ \qquad .
(b) $\lim _{x \rightarrow 3^{-}} \frac{\sqrt{5 x}(x-3)}{|x-3|}=$ \qquad .
(c) $\lim _{h \rightarrow 0^{-}} \frac{\sqrt{3}-\sqrt{h^{2}+11 h+3}}{h}=$ \qquad .
(3) Let $f(x)=\sqrt{x-x^{2}}$ for $0 \leq x \leq 1$.
(a) Find $L=\lim _{x \rightarrow 1^{-}} f(x)$.
\qquad
(b) Given a small number $\epsilon>0$, find the largest $\delta>0$ such that $|f(x)-L|<\epsilon$ when $1-\delta<x<1$
$\delta=$ \qquad .
(c) Using a calculator, find the numerical value of δ (to at least 8 decimals) when $\epsilon=0.01$.
$\delta=$ \qquad .

