MAT 1214: CALCULUS I ONE SIDED LIMITS AND THE DEFINITION OF A LIMIT

(1) Sketch the graph and find the requested limits:

$$f(x) = \begin{cases} \sqrt{9 - x^2} & 0 \le x < 3\\ 3 - x & 3 \le x < 6\\ 3 & x = 6 \end{cases}$$

- (a) $\lim_{x \to 0^+} f(x) =$ _____.
- (b) For $c \in (0,3)$, find $\lim_{x \to c} f(x) =$ _____.
- (c) $\lim_{x \to 3^{-}} f(x) =$ _____.
- (d) $\lim_{x \to 3^+} f(x) =$ _____.
- (e) $\lim_{x \to 3} f(x) =$ _____.
- (f) For $c \in (3, 6)$, find $\lim_{x \to c} f(x) =$ _____.
- (g) $\lim_{x \to 6^-} f(x) =$ _____.

(2) Find the following one-sided limits: (a) $\lim_{x \to -1^+} \left(\frac{x}{x+3} \left(\frac{4x+8}{x^2+3x} \right) \right) = \underline{\qquad}.$

(b)
$$\lim_{x \to 3^{-}} \frac{\sqrt{5x}(x-3)}{|x-3|} = \underline{\qquad}.$$

(c)
$$\lim_{h \to 0^-} \frac{\sqrt{3} - \sqrt{h^2 + 11h + 3}}{h} =$$
_____.

(3) Let $f(x) = \sqrt{x - x^2}$ for $0 \le x \le 1$. (a) Find $L = \lim_{x \to 1^-} f(x)$.

 $L = _$ ____.

(b) Given a small number $\epsilon > 0$, find the largest $\delta > 0$ such that $|f(x) - L| < \epsilon$ when $1 - \delta < x < 1$.

 $\delta =$ _____.

(c) Using a calculator, find the numerical value of δ (to at least 8 decimals) when $\epsilon = 0.01$.

 $\delta = ___.$