Difference between revisions of "Half-angle formulas"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
(fixing link to go straight to pdf)
Line 1: Line 1:
 +
Half angle identities:
 +
 +
* <math> \sin{\left(\frac{x}{2}\right)} = \pm \sqrt{\frac{1 - \cos{x}}{2}} </math>
 +
 +
* <math> \cos{\left(\frac{x}{2}\right)} = \pm \sqrt{\frac{1 + \cos{x}}{2}} </math>
 +
 +
* <math> \tan{\left(\frac{x}{2}\right)} = \pm \sqrt{\frac{1 - \cos{x}}{1 + \cos{x}}} </math>
 +
::::: <math>  = \frac{\sin{x}}{1 + \cos{x}} </math>
 +
::::: <math> = \frac{1 - \cos{x}}{\sin{x}} </math>
 +
 +
==Resources==
 
* [https://mathresearch.utsa.edu/wikiFiles/MAT1093/Half-angle%20formulas/Esparza%201093%20Notes%203.6B.pdf Half-angle formulas]. Written notes created by Professor Esparza, UTSA.
 
* [https://mathresearch.utsa.edu/wikiFiles/MAT1093/Half-angle%20formulas/Esparza%201093%20Notes%203.6B.pdf Half-angle formulas]. Written notes created by Professor Esparza, UTSA.

Revision as of 14:55, 23 September 2021

Half angle identities:

Resources