Difference between revisions of "MAT2233"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
(change to topic title)
(Added content to table (Orthogonality and determinants))
Line 68: Line 68:
 
||
 
||
 
    
 
    
 
 
[[Linear Transformations]]  
 
[[Linear Transformations]]  
  
Line 93: Line 92:
 
||
 
||
 
    
 
    
 
 
[[Matrix Products and Inverses]]  
 
[[Matrix Products and Inverses]]  
  
Line 173: Line 171:
 
||
 
||
 
    
 
    
[[The Dimension of Subspaces]]  
+
[[The Dimension of a Subspace]]  
  
 
||
 
||
Line 204: Line 202:
 
||
 
||
  
* [[Bases and Linear Independence]]  
+
* [[Bases and Linear Independence]] <!-- 2233-3.2 -->
* Equivalence Relations
+
* '''[[Equivalence Relations]]''' <!-- DNE (recommend 1073-Mod R) -->
  
 
||
 
||
  
* Coordinates in a subspace of Rn
+
* Coordinates in a subspace of R<sup>n</sup>
 
* Similar matrices
 
* Similar matrices
 
* Diagonal matrices
 
* Diagonal matrices
Line 225: Line 223:
 
||
 
||
  
<div style="text-align: center;"> 5.1, 5.2, 5.3, and 5.4 </div>
+
<div style="text-align: center;"> 5.1</div>
  
 
||
 
||
 
 
    
 
    
[[Orthogonality]]  
+
[[Orthogonal Projections and Orthonormal Bases]]  
  
 
||
 
||
  
* Parallel and perpendicular lines
+
* [[Parallel and Perpendicular Lines]] <!-- DNE (recommend 1093-2.1) -->
* Absolute value function
+
* [[Absolute value function]]<!-- DNE (recommend 1073-Mod R) -->
* Basic trigonometric function
+
* [[Trig. Functions: Unit Circle Approach]] <!-- 1093-2.2 -->
* Properties of inner products
+
* [[Matrix Products and Inverses|Inner Products]] <!-- 2233-2.3 and 2.4 -->
 +
* [[Bases and Linear Independence]] <!-- 2233-3.2 -->
  
 
||
 
||
  
* Transpose of a Matrix
+
* Magnitude (or norm or length) of a vector
 +
* Unit Vectors
 
* Cauchy-Schwarz Inequality
 
* Cauchy-Schwarz Inequality
 
* Orthonormal vectors
 
* Orthonormal vectors
 
* Orthogonal complement
 
* Orthogonal complement
 
* Orthogonal Projection  
 
* Orthogonal Projection  
* Orthonormal Bases
+
* Orthonormal bases
 
+
* Angle between vectors
  
 
||
 
||
Line 259: Line 258:
 
||
 
||
  
<div style="text-align: center;"> 5.1, 5.2, 5.3, and 5.4 </div>
+
<div style="text-align: center;">5.2 </div>
  
 
||
 
||
  
 
    
 
    
[[Gram-Schmidt Process]]  
+
[[Gram-Schmidt Process and QR Factorization]]  
  
 
||
 
||
  
* Unit vectors
+
* [[Orthogonal Projections and Orthonormal Bases|Unit vectors]] <!-- 2233-5.1 and 5.2 -->
* Inner products
+
* [[Matrix Products and Inverses|Inner Products]] <!-- 2233-2.3 and 2.4 -->
* Orthonormal bases
+
* [[Orthogonal Projections and Orthonormal Bases|Orthonormal Bases]] <!-- 2233-5.1 and 5.2 -->
* Subspaces of R<big>n</big>
+
* [[Bases and Linear Independence]]  <!-- 2233-3.2 -->  
  
 
||
 
||
  
 
* Gram-Schmidt process
 
* Gram-Schmidt process
* The Least Squares solution
+
* QR Factorization
  
 
||
 
||
Line 288: Line 287:
 
||
 
||
  
<div style="text-align: center;">6.1, 6.2, and 6.3 </div>
+
<div style="text-align: center;">5.3</div>
 +
 
 +
||
 +
 
 +
[[Orthogonal Transformations and Orthogonal Matrices]]
 +
 
 +
||
 +
 
 +
* [[Image and Kernel of a Linear Transform]] <!-- 2233-3.1 -->
 +
* [[Matrix Products and Inverses|Inner Products]] <!-- 2233-2.3 and 2.4 -->  
 +
* [[Orthogonal Projections and Orthonormal Bases]]
  
 
||
 
||
  
 +
* Orthogonal Transformations
 +
* Properties of Othogonal Transformations
 +
* Transpose of a Matrix
 +
* The matrix of an Orthogonal Projection
 +
 +
||
 +
 +
 +
|-
 +
 +
 +
|Week&nbsp;11
 +
 +
||
 +
 +
<div style="text-align: center;">5.3</div>
 +
 +
||
 +
 
 +
[[Least Squares]]
 +
 +
||
 +
 +
* [[Linear transformations]] <!-- 2233-2.1-->
 +
* [[Orthogonal Transformations and Orthogonal Matrices]] <!-- 2233-5.3 -->
 +
* [[Orthogonal Projections and Orthonormal Bases|Orthogonal Projections]] <!-- 2233-5.3 -->
 +
 +
||
 +
 +
* The Least Squares Solution
 +
* The Normal Equation
 +
* Another matrix for an Orthogonal Projection
 +
 +
||
 +
 +
 +
|-
 +
|Week&nbsp;11
 +
 +
||
 +
 +
<div style="text-align: center;">5.3</div>
 +
 +
||
 
    
 
    
 
[[Determinants]]  
 
[[Determinants]]  
Line 297: Line 350:
 
||
 
||
  
* Summation notation
+
* [[Summation Notation]] <!-- DNE (recommend before Riemann Sums in 1214) -->
* Sgn function
+
* [[Sgn Function]] <!-- DNE (recommend 1073 Mod R) -->
 +
* [[Matrix Products and Inverses|Inverse of a Linear Transformation]] <!-- 2233-2.3 and 2.4 -->
 +
* [[Orthogonal Transformations and Orthogonal Matrices| Transpose of a Matrix]] <!-- 2233-5.3 -->
  
 
||
 
||
Line 305: Line 360:
 
* Sarrus's Rule
 
* Sarrus's Rule
 
* Row operations and determinants
 
* Row operations and determinants
* Invertibility based on determinant
+
* Invertibility based on the determinant
 
 
  
 
||
 
||
Line 312: Line 366:
  
 
|-
 
|-
 
  
 
|Week&nbsp;12  
 
|Week&nbsp;12  

Revision as of 15:05, 7 July 2020

A comprehensive list of all undergraduate math courses at UTSA can be found here.

The Wikipedia summary of Linear Algebra and its history.

Topics List

Date Sections Topics Prerequisite Skills Student Learning Outcomes
Week 1
1.1, 1.2

Systems of Linear Equations

  • Vectors and Matrices
  • Gauss-Jordan elimination
Week 2
1.3

Solutions of Linear Systems

  • Rank of a matrix
  • Matrix addition
  • The product Ax
  • Inner product
  • Linear Combinations


Week 3
2.1 and 2.2

Linear Transformations

  • Linear transformations and their properties
  • Geometry of Linear Transformations (rotations, scalings and projections)
Week 4
2.3 and 2.4

Matrix Products and Inverses

  • Matrix Products (both inner product and row-by-column methods)
  • The Inverses of a linear transform


Week 6
3.1

Image and Kernel of a Linear Transform

  • The image of a Linear transformation
  • The kernel of a linear transformation
  • Span of a set of vectors
  • Alternative characterizations of Invertible matrices


Week 6
3.2

Bases and Linear Independence

  • Subspaces in Different Dimensions
  • Bases and Linear independence
  • Characterizations of Linear Independence


Week 5
3.3

The Dimension of a Subspace

  • Dimension of the Image
  • Rank-nullity theorem
  • Various bases in Rn


Week 7/8
3.4


Similar Matrices and Coordinates

  • Coordinates in a subspace of Rn
  • Similar matrices
  • Diagonal matrices


Week 9
5.1

Orthogonal Projections and Orthonormal Bases

  • Magnitude (or norm or length) of a vector
  • Unit Vectors
  • Cauchy-Schwarz Inequality
  • Orthonormal vectors
  • Orthogonal complement
  • Orthogonal Projection
  • Orthonormal bases
  • Angle between vectors


Week 10
5.2


Gram-Schmidt Process and QR Factorization

  • Gram-Schmidt process
  • QR Factorization


Week 11
5.3

Orthogonal Transformations and Orthogonal Matrices

  • Orthogonal Transformations
  • Properties of Othogonal Transformations
  • Transpose of a Matrix
  • The matrix of an Orthogonal Projection


Week 11
5.3

Least Squares

  • The Least Squares Solution
  • The Normal Equation
  • Another matrix for an Orthogonal Projection


Week 11
5.3

Determinants

  • Properties of Determinants
  • Sarrus's Rule
  • Row operations and determinants
  • Invertibility based on the determinant


Week 12
6.1, 6.2, and 6.3


Cramer's Rule

  • Properties of Determinants
  • linear Systems
  • Invertible matrices
  • Parrallelepipeds in Rn
  • Geometric Interpretation of the Determinant
  • Cramer's rule


Week 13
7.1, 7.2, 7.3, and 8.1


Eigenvalues and Eigenvectors

  • Finding real roots of a polynomial
  • Finding the kernel of a function
  • Diagonalization
  • Finding eigenvalues
  • Finding eigenvectors
  • Geometric and algebraic multiplicity


Week 14
7.1, 7.2, 7.3, and 8.1


Spectral Theorem

  • Transpose of a matrix
  • Basis
  • Orthogonal matrices
  • Diagonal matrices
  • Symmetric matrices
  • Spectral Theorem