Difference between revisions of "The Additivity Theorem"
Jump to navigation
Jump to search
(Created page with "<blockquote style="background: white; border: 1px solid black; padding: 1em;"> Let <span class="math-inline"><math> f </math></span> be a real-valued function on the interval...") |
|||
Line 1: | Line 1: | ||
<blockquote style="background: white; border: 1px solid black; padding: 1em;"> | <blockquote style="background: white; border: 1px solid black; padding: 1em;"> | ||
− | Let <span class="math-inline"><math> f </math></span> be a real-valued function on the interval <span class="math-inline"><math> | + | Let <span class="math-inline"><math> f </math></span> be a real-valued function on the interval <span class="math-inline"><math> [a,b] </math></span>, and let <span class="math-inline"><math> c\in (a,b) </math></span>. Then, <span class="math-inline"><math> f </math></span> is Riemann integrable on <span class="math-inline"><math> [a,b] </math></span> if and only if it is also Riemann integrable on <span class="math-inline"><math> [a,c] </math></span> and <span class="math-inline"><math> [c,b] </math></span>. In this case, we have that |
<math> </math> | <math> </math> | ||
</blockquote> | </blockquote> |
Revision as of 15:44, 9 November 2021
Let be a real-valued function on the interval , and let . Then, is Riemann integrable on if and only if it is also Riemann integrable on and . In this case, we have that