From Department of Mathematics at UTSA
Jump to navigation
Jump to search
The Additivity Theorem for Riemann Integrable Functions: Let be a real-valued function on the interval , and let . Then, is Riemann integrable on if and only if it is also Riemann integrable on and . In this case,
Proof: Suppose that and for some . Let be given.
- Since we have that for there exists a partition such that for all partitions finer than , () and for any choice of 's in each subinterval we have that:
- Similarly, since we have that for there exists a partition such that for all partitions finer than , ) and for any choice of 's in each subinterval we have that:
- Let . Then is a partition of and for all partitions finer than , () we must have that and hold. Then for any choice of 's in each subinterval we have that:
- Hence exists and:
Licensing
Content obtained and/or adapted from: