Difference between revisions of "The Additivity Theorem"
Jump to navigation
Jump to search
Proof: Suppose that and for some . Let be given.
Line 7: | Line 7: | ||
</blockquote> | </blockquote> | ||
− | <li><strong>Proof</strong>: Suppose that <span class="math-inline"><math>\int_a^c f(x) \ | + | <li><strong>Proof</strong>: Suppose that <span class="math-inline"><math>\int_a^c f(x) \; d \alpha (x) = A</math></span> and <span class="math-inline"><math>\int_c^b f(x) \; d \alpha (x) = B</math></span> for some <span class="math-inline"><math>A, B \in \mathbb{R}</math></span>. Let <span class="math-inline"><math>\epsilon > 0</math></span> be given.</li> |
</ul> | </ul> | ||
<ul> | <ul> | ||
− | <li>Since <span class="math-inline"><math>\int_a^c f(x) \ | + | <li>Since <span class="math-inline"><math>\int_a^c f(x) \; d \alpha (x) = A</math></span> we have that for <span class="math-inline"><math>\epsilon_1 = \frac{\epsilon}{2} > 0</math></span> there exists a partition <span class="math-inline"><math>P_{\epsilon_1} \in \mathscr{P}[a, c]</math></span> such that for all partitions <span class="math-inline"><math>P' \in \mathscr{P}[a, c]</math></span> finer than <span class="math-inline"><math>P_{\epsilon_1}</math></span>, (<span class="math-inline"><math>P_{\epsilon_1} \subseteq P'</math></span>) and for any choice of <span class="math-inline"><math>t_k</math></span>'s in each <span class="math-inline"><math>k^{\mathrm{th}}</math></span> subinterval we have that:</li> |
</ul> | </ul> | ||
<div style="text-align: center;"><math>\begin{align} \quad \mid S(P', f, \alpha) - A \mid < \epsilon_1 = \frac{\epsilon}{2} \quad (*) \end{align}</math></div> | <div style="text-align: center;"><math>\begin{align} \quad \mid S(P', f, \alpha) - A \mid < \epsilon_1 = \frac{\epsilon}{2} \quad (*) \end{align}</math></div> | ||
<ul> | <ul> | ||
− | <li>Similarly, since <span class="math-inline"><math>\int_c^b f(x) \ | + | <li>Similarly, since <span class="math-inline"><math>\int_c^b f(x) \; d \alpha (x) = B</math></span> we have that for <span class="math-inline"><math>\epsilon_2 = \frac{\epsilon}{2} > 0</math></span> there exists a partition <span class="math-inline"><math>P_{\epsilon_2} \in \mathscr{P}[c, b]</math></span> such that for all partitions <span class="math-inline"><math>P'' \in \mathscr{P}[c, b]</math></span> finer than <span class="math-inline"><math>P_{\epsilon_2}</math></span>, <span class="math-inline"><math>(P_{\epsilon_2} \subseteq P''</math></span>) and for any choice of <span class="math-inline"><math>u_k</math></span>'s in each <span class="math-inline"><math>k^{\mathrm{th}}</math></span> subinterval we have that:</li> |
</ul> | </ul> | ||
<div style="text-align: center;"><math>\begin{align} \quad \mid S(P'', f, \alpha) - B \mid < \epsilon_2 = \frac{\epsilon}{2} \quad (**) \end{align}</math></div> | <div style="text-align: center;"><math>\begin{align} \quad \mid S(P'', f, \alpha) - B \mid < \epsilon_2 = \frac{\epsilon}{2} \quad (**) \end{align}</math></div> | ||
Line 22: | Line 22: | ||
<div style="text-align: center;"><math>\begin{align} \quad \mid S(P, f, \alpha) - (A + B) \mid = \mid S(P', f, \alpha) + S(P'', f, \alpha) - (A + B) \mid \leq \mid S(P', f, \alpha - A \mid + \mid S(P'', f, \alpha) - B \mid < \epsilon_1 + \epsilon_2 = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \end{align}</math></div> | <div style="text-align: center;"><math>\begin{align} \quad \mid S(P, f, \alpha) - (A + B) \mid = \mid S(P', f, \alpha) + S(P'', f, \alpha) - (A + B) \mid \leq \mid S(P', f, \alpha - A \mid + \mid S(P'', f, \alpha) - B \mid < \epsilon_1 + \epsilon_2 = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \end{align}</math></div> | ||
<ul> | <ul> | ||
− | <li>Hence <span class="math-inline"><math>\int_a^b f(x) \ | + | <li>Hence <span class="math-inline"><math>\int_a^b f(x) \; d \alpha (x)</math></span> exists and:</li> |
</ul> | </ul> | ||
− | <div style="text-align: center;"><math>\begin{align} \quad \int_a^b f(x) \ | + | <div style="text-align: center;"><math>\begin{align} \quad \int_a^b f(x) \; d \alpha (x) = \int_a^c f(x) \; d \alpha (x) + \int_c^b f(x) \; d \alpha (x) \quad \blacksquare \end{align}</math></div> |
Revision as of 15:55, 9 November 2021
The Additivity Theorem for Riemann Integrable Functions: Let be a real-valued function on the interval , and let . Then, is Riemann integrable on if and only if it is also Riemann integrable on and . In this case,
- Since we have that for there exists a partition Failed to parse (unknown function "\mathscr"): {\displaystyle P_{\epsilon_1} \in \mathscr{P}[a, c]} such that for all partitions Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P' \in \mathscr{P}[a, c]} finer than , () and for any choice of 's in each subinterval we have that:
- Similarly, since we have that for there exists a partition Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_{\epsilon_2} \in \mathscr{P}[c, b]} such that for all partitions Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P'' \in \mathscr{P}[c, b]} finer than , ) and for any choice of 's in each subinterval we have that:
- Let . Then is a partition of and for all partitions Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P \in \mathscr{P}[a, b]} finer than , () we must have that and hold. Then for any choice of 's in each subinterval we have that:
- Hence exists and: