Difference between revisions of "The Additivity Theorem"
Jump to navigation
Jump to search
Proof: Suppose that and for some . Let be given.
| Line 10: | Line 10: | ||
</ul> | </ul> | ||
<ul> | <ul> | ||
| − | <li>Since <span class="math-inline"><math>\int_a^c f(x) \; d \alpha (x) = A</math></span> we have that for <span class="math-inline"><math>\epsilon_1 = \frac{\epsilon}{2} > 0</math></span> there exists a partition <span class="math-inline"><math>P_{\epsilon_1} \in \ | + | <li>Since <span class="math-inline"><math>\int_a^c f(x) \; d \alpha (x) = A</math></span> we have that for <span class="math-inline"><math>\epsilon_1 = \frac{\epsilon}{2} > 0</math></span> there exists a partition <span class="math-inline"><math>P_{\epsilon_1} \in \mathcal{P}[a, c]</math></span> such that for all partitions <span class="math-inline"><math>P' \in \mathcal{P}[a, c]</math></span> finer than <span class="math-inline"><math>P_{\epsilon_1}</math></span>, (<span class="math-inline"><math>P_{\epsilon_1} \subseteq P'</math></span>) and for any choice of <span class="math-inline"><math>t_k</math></span>'s in each <span class="math-inline"><math>k^{\mathrm{th}}</math></span> subinterval we have that:</li> |
</ul> | </ul> | ||
<div style="text-align: center;"><math>\begin{align} \quad \mid S(P', f, \alpha) - A \mid < \epsilon_1 = \frac{\epsilon}{2} \quad (*) \end{align}</math></div> | <div style="text-align: center;"><math>\begin{align} \quad \mid S(P', f, \alpha) - A \mid < \epsilon_1 = \frac{\epsilon}{2} \quad (*) \end{align}</math></div> | ||
<ul> | <ul> | ||
| − | <li>Similarly, since <span class="math-inline"><math>\int_c^b f(x) \; d \alpha (x) = B</math></span> we have that for <span class="math-inline"><math>\epsilon_2 = \frac{\epsilon}{2} > 0</math></span> there exists a partition <span class="math-inline"><math>P_{\epsilon_2} \in \ | + | <li>Similarly, since <span class="math-inline"><math>\int_c^b f(x) \; d \alpha (x) = B</math></span> we have that for <span class="math-inline"><math>\epsilon_2 = \frac{\epsilon}{2} > 0</math></span> there exists a partition <span class="math-inline"><math>P_{\epsilon_2} \in \mathcal{P}[c, b]</math></span> such that for all partitions <span class="math-inline"><math>P'' \in \mathcal{P}[c, b]</math></span> finer than <span class="math-inline"><math>P_{\epsilon_2}</math></span>, <span class="math-inline"><math>(P_{\epsilon_2} \subseteq P''</math></span>) and for any choice of <span class="math-inline"><math>u_k</math></span>'s in each <span class="math-inline"><math>k^{\mathrm{th}}</math></span> subinterval we have that:</li> |
</ul> | </ul> | ||
<div style="text-align: center;"><math>\begin{align} \quad \mid S(P'', f, \alpha) - B \mid < \epsilon_2 = \frac{\epsilon}{2} \quad (**) \end{align}</math></div> | <div style="text-align: center;"><math>\begin{align} \quad \mid S(P'', f, \alpha) - B \mid < \epsilon_2 = \frac{\epsilon}{2} \quad (**) \end{align}</math></div> | ||
<ul> | <ul> | ||
| − | <li>Let <span class="math-inline"><math>P_{\epsilon} = P_{\epsilon_1} \cup P_{\epsilon_2}</math></span>. Then <span class="math-inline"><math>P_{\epsilon}</math></span> is a partition of <span class="math-inline"><math>[a, b]</math></span> and for all partitions <span class="math-inline"><math>P \in \ | + | <li>Let <span class="math-inline"><math>P_{\epsilon} = P_{\epsilon_1} \cup P_{\epsilon_2}</math></span>. Then <span class="math-inline"><math>P_{\epsilon}</math></span> is a partition of <span class="math-inline"><math>[a, b]</math></span> and for all partitions <span class="math-inline"><math>P \in \mathcal{P}[a, b]</math></span> finer than <span class="math-inline"><math>P_{\epsilon}</math></span>, (<span class="math-inline"><math>P_{\epsilon} \subseteq P</math></span>) we must have that <span class="math-inline"><math>(*)</math></span> and <span class="math-inline"><math>(**)</math></span> hold. Then for any choice of <span class="math-inline"><math>v_k</math></span>'s in each <span class="math-inline"><math>k^{\mathrm{th}}</math></span> subinterval we have that:</li> |
</ul> | </ul> | ||
<div style="text-align: center;"><math>\begin{align} \quad \mid S(P, f, \alpha) - (A + B) \mid = \mid S(P', f, \alpha) + S(P'', f, \alpha) - (A + B) \mid \leq \mid S(P', f, \alpha - A \mid + \mid S(P'', f, \alpha) - B \mid < \epsilon_1 + \epsilon_2 = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \end{align}</math></div> | <div style="text-align: center;"><math>\begin{align} \quad \mid S(P, f, \alpha) - (A + B) \mid = \mid S(P', f, \alpha) + S(P'', f, \alpha) - (A + B) \mid \leq \mid S(P', f, \alpha - A \mid + \mid S(P'', f, \alpha) - B \mid < \epsilon_1 + \epsilon_2 = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \end{align}</math></div> | ||
Revision as of 15:56, 9 November 2021
The Additivity Theorem for Riemann Integrable Functions: Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f } be a real-valued function on the interval Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [a,b] } , and let . Then, is Riemann integrable on if and only if it is also Riemann integrable on and . In this case,
- Since we have that for there exists a partition such that for all partitions finer than , () and for any choice of 's in each Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k^{\mathrm{th}}} subinterval we have that:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \quad \mid S(P', f, \alpha) - A \mid < \epsilon_1 = \frac{\epsilon}{2} \quad (*) \end{align}}
- Similarly, since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_c^b f(x) \; d \alpha (x) = B} we have that for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_2 = \frac{\epsilon}{2} > 0} there exists a partition Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_{\epsilon_2} \in \mathcal{P}[c, b]} such that for all partitions Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P'' \in \mathcal{P}[c, b]} finer than Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_{\epsilon_2}} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (P_{\epsilon_2} \subseteq P''} ) and for any choice of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_k} 's in each Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k^{\mathrm{th}}} subinterval we have that:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \quad \mid S(P'', f, \alpha) - B \mid < \epsilon_2 = \frac{\epsilon}{2} \quad (**) \end{align}}
- Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_{\epsilon} = P_{\epsilon_1} \cup P_{\epsilon_2}} . Then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_{\epsilon}} is a partition of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [a, b]} and for all partitions Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P \in \mathcal{P}[a, b]} finer than Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_{\epsilon}} , (Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_{\epsilon} \subseteq P} ) we must have that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (*)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (**)} hold. Then for any choice of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_k} 's in each Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k^{\mathrm{th}}} subinterval we have that:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \quad \mid S(P, f, \alpha) - (A + B) \mid = \mid S(P', f, \alpha) + S(P'', f, \alpha) - (A + B) \mid \leq \mid S(P', f, \alpha - A \mid + \mid S(P'', f, \alpha) - B \mid < \epsilon_1 + \epsilon_2 = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \end{align}}
- Hence Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_a^b f(x) \; d \alpha (x)} exists and:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \quad \int_a^b f(x) \; d \alpha (x) = \int_a^c f(x) \; d \alpha (x) + \int_c^b f(x) \; d \alpha (x) \quad \blacksquare \end{align}}