Difference between revisions of "The Additivity Theorem"
Jump to navigation
Jump to search
Proof: Suppose that and for some . Let be given.
(7 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<blockquote style="background: white; border: 1px solid black; padding: 1em;"> | <blockquote style="background: white; border: 1px solid black; padding: 1em;"> | ||
− | Let <span class="math-inline"><math> f </math></span> be a real-valued function on the interval <span class="math-inline"><math> [a,b] </math></span>, and let <span class="math-inline"><math> c\in (a,b) </math></span>. Then, <span class="math-inline"><math> f </math></span> is Riemann integrable on <span class="math-inline"><math> [a,b] </math></span> if and only if it is also Riemann integrable on <span class="math-inline"><math> [a,c] </math></span> and <span class="math-inline"><math> [c,b] </math></span>. In this case, | + | '''The Additivity Theorem for Riemann Integrable Functions''': Let <span class="math-inline"><math> f </math></span> be a real-valued function on the interval <span class="math-inline"><math> [a,b] </math></span>, and let <span class="math-inline"><math> c\in (a,b) </math></span>. Then, <span class="math-inline"><math> f </math></span> is Riemann integrable on <span class="math-inline"><math> [a,b] </math></span> if and only if it is also Riemann integrable on <span class="math-inline"><math> [a,c] </math></span> and <span class="math-inline"><math> [c,b] </math></span>. In this case, |
− | <math> | + | <div style="text-align: center;"> <math> \int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f </math> </div> |
</blockquote> | </blockquote> | ||
+ | |||
+ | <li><strong>Proof</strong>: Suppose that <span class="math-inline"><math>\int_a^c f(x) \; d \alpha (x) = A</math></span> and <span class="math-inline"><math>\int_c^b f(x) \; d \alpha (x) = B</math></span> for some <span class="math-inline"><math>A, B \in \mathbb{R}</math></span>. Let <span class="math-inline"><math>\epsilon > 0</math></span> be given.</li> | ||
+ | </ul> | ||
+ | <ul> | ||
+ | <li>Since <span class="math-inline"><math>\int_a^c f(x) \; d \alpha (x) = A</math></span> we have that for <span class="math-inline"><math>\epsilon_1 = \frac{\epsilon}{2} > 0</math></span> there exists a partition <span class="math-inline"><math>P_{\epsilon_1} \in \mathcal{P}[a, c]</math></span> such that for all partitions <span class="math-inline"><math>P' \in \mathcal{P}[a, c]</math></span> finer than <span class="math-inline"><math>P_{\epsilon_1}</math></span>, (<span class="math-inline"><math>P_{\epsilon_1} \subseteq P'</math></span>) and for any choice of <span class="math-inline"><math>t_k</math></span>'s in each <span class="math-inline"><math>k^{\mathrm{th}}</math></span> subinterval we have that:</li> | ||
+ | </ul> | ||
+ | <div style="text-align: center;"><math>\begin{align} \quad \mid S(P', f, \alpha) - A \mid < \epsilon_1 = \frac{\epsilon}{2} \quad (*) \end{align}</math></div> | ||
+ | <ul> | ||
+ | <li>Similarly, since <span class="math-inline"><math>\int_c^b f(x) \; d \alpha (x) = B</math></span> we have that for <span class="math-inline"><math>\epsilon_2 = \frac{\epsilon}{2} > 0</math></span> there exists a partition <span class="math-inline"><math>P_{\epsilon_2} \in \mathcal{P}[c, b]</math></span> such that for all partitions <span class="math-inline"><math>P'' \in \mathcal{P}[c, b]</math></span> finer than <span class="math-inline"><math>P_{\epsilon_2}</math></span>, <span class="math-inline"><math>(P_{\epsilon_2} \subseteq P''</math></span>) and for any choice of <span class="math-inline"><math>u_k</math></span>'s in each <span class="math-inline"><math>k^{\mathrm{th}}</math></span> subinterval we have that:</li> | ||
+ | </ul> | ||
+ | <div style="text-align: center;"><math>\begin{align} \quad \mid S(P'', f, \alpha) - B \mid < \epsilon_2 = \frac{\epsilon}{2} \quad (**) \end{align}</math></div> | ||
+ | <ul> | ||
+ | <li>Let <span class="math-inline"><math>P_{\epsilon} = P_{\epsilon_1} \cup P_{\epsilon_2}</math></span>. Then <span class="math-inline"><math>P_{\epsilon}</math></span> is a partition of <span class="math-inline"><math>[a, b]</math></span> and for all partitions <span class="math-inline"><math>P \in \mathcal{P}[a, b]</math></span> finer than <span class="math-inline"><math>P_{\epsilon}</math></span>, (<span class="math-inline"><math>P_{\epsilon} \subseteq P</math></span>) we must have that <span class="math-inline"><math>(*)</math></span> and <span class="math-inline"><math>(**)</math></span> hold. Then for any choice of <span class="math-inline"><math>v_k</math></span>'s in each <span class="math-inline"><math>k^{\mathrm{th}}</math></span> subinterval we have that:</li> | ||
+ | </ul> | ||
+ | <div style="text-align: center;"><math>\begin{align} \quad \mid S(P, f, \alpha) - (A + B) \mid = \mid S(P', f, \alpha) + S(P'', f, \alpha) - (A + B) \mid \leq \mid S(P', f, \alpha - A \mid + \mid S(P'', f, \alpha) - B \mid < \epsilon_1 + \epsilon_2 = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \end{align}</math></div> | ||
+ | <ul> | ||
+ | <li>Hence <span class="math-inline"><math>\int_a^b f(x) \; d \alpha (x)</math></span> exists and:</li> | ||
+ | </ul> | ||
+ | <div style="text-align: center;"><math>\begin{align} \quad \int_a^b f(x) \; d \alpha (x) = \int_a^c f(x) \; d \alpha (x) + \int_c^b f(x) \; d \alpha (x) \quad \blacksquare \end{align}</math></div> | ||
+ | |||
+ | |||
+ | ==Licensing== | ||
+ | Content obtained and/or adapted from: | ||
+ | * [http://mathonline.wikidot.com/riemann-stieltjes-integrability-on-subintervals Riemann-Stieltjes Integrability on Subintervals, mathonline.wikidot.com] under a CC BY-SA license |
Latest revision as of 15:57, 9 November 2021
The Additivity Theorem for Riemann Integrable Functions: Let be a real-valued function on the interval , and let . Then, is Riemann integrable on if and only if it is also Riemann integrable on and . In this case,
- Since we have that for there exists a partition such that for all partitions finer than , () and for any choice of 's in each subinterval we have that:
- Similarly, since we have that for there exists a partition such that for all partitions finer than , ) and for any choice of 's in each subinterval we have that:
- Let . Then is a partition of and for all partitions finer than , () we must have that and hold. Then for any choice of 's in each subinterval we have that:
- Hence exists and:
Licensing
Content obtained and/or adapted from:
- Riemann-Stieltjes Integrability on Subintervals, mathonline.wikidot.com under a CC BY-SA license