Difference between revisions of "MAT3213"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
(Fixed broken comments!)
 
(47 intermediate revisions by 4 users not shown)
Line 1: Line 1:
The textbook for this course is
+
'''Catalog entry''':
Introduction to Real Analysis by Bartle and Sherbert
+
 
 +
''Prerequisites'': MAT 1224 and MAT 3013.
 +
 
 +
''Content'': Axiomatic definition of real numbers, including order properties and completeness; infinite sequences and their convergence; basic notions related to series and their convergence; functions and function limits. Introduction to topology of the real line. Emphasis on theorem proving.
 +
 
 +
 
 +
 
 +
''Sample textbook'': Introduction to Real Analysis by Bartle and Sherbert
  
 
A comprehensive list of all undergraduate math courses at UTSA can be found [https://catalog.utsa.edu/undergraduate/coursedescriptions/mat/  here].
 
A comprehensive list of all undergraduate math courses at UTSA can be found [https://catalog.utsa.edu/undergraduate/coursedescriptions/mat/  here].
Line 13: Line 20:
  
 
| <!--Date--> Week 1
 
| <!--Date--> Week 1
 
|| <!--Sections-->
 
 
1.1
 
 
|| <!--Topics-->
 
       
 
[[Basic Terminology]]
 
 
|| <!--Prerequisite Skills-->
 
 
* [[Set Theory| Sets of Objects]] <!--- 3013-2.1-2.3 --->
 
 
|| <!--Student Learning Outcomes-->
 
 
* Subsets
 
* The definition of equality between two sets
 
* Commonly used sets
 
 
 
|-
 
 
 
| <!--Date--> Week 1   
 
 
|| <!--Sections-->
 
 
1.1
 
 
|| <!--Topics-->
 
 
 
 
[[Set Operations]]
 
 
|| <!--Prerequisite Skills-->
 
 
*[[Basic Terminology]] <!--- 3213-1.1 --->
 
*[[Propositional Logic|De Morgans Laws in Logic ]] <!--- 3013-1.2 and 1.3 --->
 
 
|| <!--Student Learning Outcomes-->
 
 
* Union, intersection and complements of sets
 
* De Morgans Laws for sets
 
* Infinite Unions and intersections of sets
 
 
|-
 
 
 
| <!--Date--> Week 1
 
 
|| <!--Sections-->
 
 
1.1
 
 
|| <!--Topics-->
 
 
 
[[Functions (The Cartesian product definition)]]
 
 
|| <!--Prerequisite Skills-->
 
 
* [[Functions|Domain and Range of a Function]] <!--- 1073-1 --->
 
* [[Basic Terminology]] <!--- 3213-1.1 --->
 
* [[Set Operations]] <!--- 3213-1.1 --->
 
 
|| <!--Student Learning Outcomes-->
 
 
* The Cartesian Product
 
* Definition of a function
 
* Domain and Range in terms of the Cartesian product
 
* Transformations and Machines
 
 
 
|-
 
 
 
| <!--Date--> Week 1/2
 
 
|| <!--Sections-->
 
 
1.1
 
 
|| <!--Topics-->
 
 
 
[[Direct and Inverse Images]]
 
 
|| <!--Prerequisite Skills-->
 
 
* [[Functions(The Cartesian Product Definition)]] <!--- 3213-1.1 --->
 
* [[Inverse Functions]] <!--- 1073-7 --->
 
* [[Set Operations]] <!--- 3213-1.1 --->
 
 
|| <!--Student Learning Outcomes-->
 
 
* Definition of the Direct Image
 
* Definition of the Inverse Image
 
 
|-
 
 
 
| <!--Date--> Week 1/2 
 
 
|| <!--Sections-->
 
 
1.1
 
 
|| <!--Topics-->
 
 
 
 
[[Injective and Surjective Functions]]
 
 
|| <!--Prerequisite Skills-->
 
 
* [[Functions(The Cartesian Product Definition)]] <!--- 3213-1.1 --->
 
* [[Direct and Inverse Images]] <!--- 3213-1.1 --->
 
* [[Set Operations]] <!--- 3213-1.1 --->
 
 
|| <!--Student Learning Outcomes-->
 
 
* Injective functions
 
* Surjective functions
 
* Bijective functions
 
 
|-
 
 
 
| <!--Date--> Week 1/2
 
  
 
|| <!--Sections-->  
 
|| <!--Sections-->  
Line 146: Line 27:
 
|| <!--Topics-->  
 
|| <!--Topics-->  
 
    
 
    
 
+
* [[Sets:Definitions]]
[[Inverse Functions]]  
+
* [[Sets:Operations]]
 +
* [[Functions:Definition]]
 +
* [[Domain of a Function|Functions:Domain]]
 +
* [[Range of a Function|Functions:Range]]
 +
* [[Functions:Injective]]
 +
* [[Functions:Bijective]]
 +
* [[Functions:Composition]]
 +
* [[Functions:Inverses]]
 +
* [[Functions:Forward Image]]
 +
* [[Functions:Forward Image|Functions:Inverse Image]]
 +
* [[Functions:Restriction]]  
  
 
|| <!--Prerequisite Skills-->  
 
|| <!--Prerequisite Skills-->  
 
* [[Injective and Surjective Functions]]  <!--- 3213-1.1 --->
 
* [[Direct and Inverse Images]] <!--- 3213-1.1 --->
 
  
 
|| <!--Student Learning Outcomes-->  
 
|| <!--Student Learning Outcomes-->  
  
* Definition of Inverse functions
+
<!-- ------------------------------------------------------------ -->
* Criteria for an Inverse of a function to exist
 
 
 
|-
 
 
 
 
 
| <!--Date--> Week 1/2
 
 
 
|| <!--Sections-->
 
 
 
1.1
 
 
 
|| <!--Topics-->
 
 
 
[[Composition of Functions]]
 
 
 
|| <!--Prerequisite Skills-->
 
 
 
* [[Functions(The Cartesian Product Definition)]] <!--- 3213-1.1 --->
 
* [[Direct and Inverse Images]] <!--- 3213-1.1 --->
 
 
 
|| <!--Student Learning Outcomes-->
 
 
 
* Definition of a composition function
 
* When function composition is defined
 
 
 
|-
 
 
 
 
 
| <!--Date--> Week 1/2
 
 
 
|| <!--Sections-->
 
 
 
1.1
 
 
 
|| <!--Topics-->
 
 
 
 
 
[[Restrictions on Functions]]
 
 
 
|| <!--Prerequisite Skills-->
 
 
 
* [[Functions(The Cartesian Product Definition)|Domain and Range]] <!--- 3213-1.1 --->
 
 
 
|| <!--Student Learning Outcomes-->  
 
 
 
* Define the restriction of a function
 
* Positive Square Root function
 
  
 
|-
 
|-
Line 212: Line 53:
 
|| <!--Sections-->  
 
|| <!--Sections-->  
  
1.2
+
1.2 & 1.3
  
 
|| <!--Topics-->   
 
|| <!--Topics-->   
  
[[Mathematical Induction]]
+
* [[Natural Numbers:Well-Ordering]]
 
+
* [[Proofs:Induction]]
|| <!--Prerequisite Skills-->
+
* [[Proofs:Induction|Induction:Variants]]
 
+
* [[Sets:Cardinality]]
* [[Basic Terminology]] <!--- 3213-1.1 --->
+
* [[Sets:Finite]]
* [[Set Operations]] <!--- 3213-1.1 --->
+
* [[Sets:Countable]]
 
+
* [[Sets:Uncountable]]
|| <!--Student Learning Outcomes-->
 
 
 
* Well-ordering principal
 
* Principal of Mathematical induction
 
* The principal of Strong Induction
 
 
 
|-
 
 
 
 
 
| <!--Date--> Week 2
 
 
 
|| <!--Sections-->
 
  
1.3
 
 
|| <!--Topics-->
 
 
 
 
[[Finite and Infinite Sets]]
 
  
 
|| <!--Prerequisite Skills-->  
 
|| <!--Prerequisite Skills-->  
  
* [[Set Operations]] <!--- 3213-1.1 --->
+
* [[Mathematical Proofs]] <!--- 3213-1.1 --->
* [[Injective and Surjective Functions]] <!--- 3213-1.1 --->
+
* [[Sets:Operations]] <!--- 3213-1.1 --->
 
+
* [[Functions:Injective]]
|| <!--Student Learning Outcomes-->
+
* [[Functions:Bijective]]
 
 
* Definition of finite and infinite sets
 
* Uniqueness Theorem
 
* If T is a subset of S and T is infinite, then S is also infinite.
 
 
 
|-
 
 
 
 
 
| <!--Date--> Week 2
 
 
 
|| <!--Sections-->
 
 
 
1.3
 
 
 
|| <!--Topics-->
 
 
 
[[Countable Sets]]
 
 
 
|| <!--Prerequisite Skills-->
 
  
* [[Injective and Surjective Functions]]  <!--- 3213-1.1 --->
 
* [[Finite and Infinite Sets]]  <!--- 3213-1.3 --->
 
  
 
|| <!--Student Learning Outcomes-->  
 
|| <!--Student Learning Outcomes-->  
 
* Countable and Uncountable sets
 
* The set of rational numbers is countable
 
* Cantor's Theorem
 
 
 
|-
 
  
 
| <!--Date--> Week 3
 
 
|| <!--Sections-->
 
 
2.1
 
 
|| <!--Topics--> 
 
 
[[Algebraic Properties of the Real Numbers]]
 
 
|| <!--Prerequisite Skills-->
 
 
* '''[[Field Properties]]''' <!--- DNE (recommend Modern Algebra) --->
 
  
 
|| <!--Student Learning Outcomes-->  
 
|| <!--Student Learning Outcomes-->  
  
* Algebraic properties of the Real Numbers
+
<!-- ------------------------------------------------------------ -->
 
 
  
 
|-
 
|-
Line 308: Line 88:
 
|| <!--Sections-->  
 
|| <!--Sections-->  
  
2.1
+
2.1-2.2
 
 
|| <!--Topics-->
 
 
 
[[Rational and Irrational Numbers]]
 
 
 
|| <!--Prerequisite Skills-->
 
 
 
* [[Restrictions on Functions| The square root function]] <!--- 3213-1.1 --->
 
* [[Functions(The Cartesian Product Definition)]] <!--- 3213-1.1 --->
 
* '''[[Definition of Even and Odd Numbers]]''' <!--- DNe (recommend Modern Algebra or MAT3013 --->
 
 
 
|| <!--Student Learning Outcomes-->
 
 
 
* The Rational Numbers
 
* Proof that the Square Root of 2 does not exist in the rational numbers
 
* The Irrational Numbers
 
 
 
 
 
|-
 
 
 
 
 
| <!--Date--> Week 2 
 
 
 
|| <!--Sections-->
 
 
 
2.1
 
 
 
|| <!--Topics--> 
 
 
 
[[The Ordering Properties of the Real Numbers]]
 
 
 
|| <!--Prerequisite Skills-->
 
 
 
* [[Solving Inequalities| Inequalities]] <!--- 1073- Mod R --->
 
* [[Algebraic properties of the Real Numbers]] <!--- 3213-2.1 --->
 
 
 
|| <!--Student Learning Outcomes-->
 
 
 
* The ordering properties of the real numbers
 
* Tricotomy property
 
* If 0 <= a < x for each x in the positive real numbers, then a = 0.
 
 
 
 
 
|-
 
 
 
 
 
| <!--Date--> Week 2   
 
 
 
|| <!--Sections-->
 
 
 
2.1
 
 
 
|| <!--Topics-->
 
 
 
[[Inequalities]]
 
 
 
|| <!--Prerequisite Skills-->
 
 
 
* [[The Ordering Properties of the Real Numbers]] <!--- 3213-2.1 --->
 
* [[The Algebraic Properties of the Real Numbers]] <!--- 3213-2.1 --->
 
 
 
|| <!--Student Learning Outcomes-->
 
 
 
* Using the order properties to solve equations
 
* Arithmetic-geometric mean
 
* Bernoulli's Inequality
 
 
 
 
 
|-
 
 
 
 
 
| <!--Date--> Week 2/3 
 
 
 
|| <!--Sections-->
 
 
 
2.2
 
  
 
|| <!--Topics-->   
 
|| <!--Topics-->   
  
[[Absolute Value and the Real Line]]
+
* [[Real Numbers]]
 +
* [[Real Numbers:Algebraic Properties]]
 +
* [[Real Numbers|Real Numbers:Order]]
 +
* [[Real Numbers:Inequalities|Inequalities]]
 +
* [[Real Numbers:Absolute Value|Absolute Value]]
  
 
|| <!--Prerequisite Skills-->  
 
|| <!--Prerequisite Skills-->  
  
* [[The Algebraic Properties of the Real Numbers]] <!--- 3213-2.1 --->
+
* [[Functions:Operations]] <!--- DNE (recommend Modern Algebra) --->
* [[Inequalities]] <!--- 3213-2.1 --->
 
  
 
|| <!--Student Learning Outcomes-->  
 
|| <!--Student Learning Outcomes-->  
  
* The absolute value function
+
<!-- ------------------------------------------------------------ -->
* The Triangle Inequality
 
* Distance between elements of the real numbers
 
* Definition of an epsilon neighborhood
 
 
 
  
 
|-
 
|-
  
  
| <!--Date--> Week 3
+
| <!--Date--> Week 4
  
 
|| <!--Sections-->  
 
|| <!--Sections-->  
  
2.3
+
2.3-2.4
  
 
|| <!--Topics-->  
 
|| <!--Topics-->  
  
[[Suprema, Infima, and the Completeness Property]]
+
* [[Real Numbers|Real Numbers:Completeness]]
 
+
* [[Real Numbers:Archimedean Property|Archimedean Property]]
|| <!--Prerequisite Skills-->
+
* [[Real Numbers:Suprema and Infima|Suprema of Subsets]]
 
+
* [[Real Numbers:Suprema and Infima|Infima of Subsets]]
* [[Inequalities]] <!--- 3213-2.1 --->
+
* [[Real Numbers:Rational]]
* [[Absolute Value and the Real Line]] <!--- 3213-2.2 --->
+
* [[Real Numbers:Irrational]]
 
 
|| <!--Student Learning Outcomes-->
 
 
 
* Upper and lower bounds of sets
 
* Definition of the suprema and infima of a set
 
* Thed completeness property of the real numbers
 
 
 
 
 
 
 
|-
 
 
 
 
 
| <!--Date--> Week 3 
 
 
 
|| <!--Sections-->
 
 
 
2.4
 
 
 
|| <!--Topics--> 
 
 
 
[[Applications of the Supremum Property]]
 
  
 
|| <!--Prerequisite Skills-->  
 
|| <!--Prerequisite Skills-->  
  
* [[Inequalities]] <!--- 3213-2.1 --->
+
* [[Real Numbers:Algebraic Properties]]
* [[Absolute Value and the Real Line]] <!--- 3213-2.2 --->
+
* [[Real Numbers:Inequalities|Inequalities]]
* [[Suprema, Infima, and the Completeness Property]] <!--- 3213-2.3 --->
+
* [[Real Numbers|Real Numbers:Order]]
 +
* [[Real Numbers:Absolute Value|Absolute Value]]
  
 
|| <!--Student Learning Outcomes-->  
 
|| <!--Student Learning Outcomes-->  
  
* Bounded Functions
+
<!-- ------------------------------------------------------------ -->
* The Archimedean Property
 
* The existence of the square root of 2
 
* Density of the rational numbers in the real numbers
 
 
 
  
 
|-
 
|-
  
 
+
| <!--Date--> Week 5
| <!--Date--> Week 3/4
 
  
 
|| <!--Sections-->  
 
|| <!--Sections-->  
  
2.5
+
2.5 & 3.1
  
 
|| <!--Topics-->   
 
|| <!--Topics-->   
  
[[Intervals]]
+
* [[Real Numbers:Intervals|Intervals]]
 +
* [[Cardinality of important sets|Real Numbers:Cardinality]]
 +
* [[Real Numbers:Sequences|Sequences]]
 +
* [[Real Numbers:Sequences|Sequences:Convergence]]
 +
* [[Sequences:Limits]]
  
 
|| <!--Prerequisite Skills-->  
 
|| <!--Prerequisite Skills-->  
  
* [[Inequalities]] <!--- 3213-2.1 --->
+
* [[Sets:Cardinality]]
* [[Suprema, Infima, and the Completeness Property]] <!--- 3213-2.3 --->
+
* [[Real Numbers:Inequalities|Inequalities]]
 +
* [[Real Numbers:Bounded Subsets|Bounded Sets]]
  
 
|| <!--Student Learning Outcomes-->  
 
|| <!--Student Learning Outcomes-->  
  
* Types of Intervals
+
<!-- ------------------------------------------------------------ -->
* Characterization of Intervals
 
* Nested intervals
 
* The Nested Intervals Property
 
* Demonstrate that the real numbers are not countable
 
 
 
  
 
|-
 
|-
  
 
+
| <!--Date--> Week 6
| <!--Date--> Week 4
 
  
 
|| <!--Sections-->  
 
|| <!--Sections-->  
  
3.1
+
3.2
  
 
|| <!--Topics-->   
 
|| <!--Topics-->   
  
[[Sequences and Their Limits]]
+
* [[Real Numbers:Sequences|Sequences:Tails]]
 +
* [[Sequences:Limits|Sequences:Limit Laws]]
 +
* [[Real Numbers:Sequences|Sequences:Bounded when Convergent]]
 +
* [[Real Numbers:Sequences|Sequences:Squeeze Theorem]]
  
 
|| <!--Prerequisite Skills-->  
 
|| <!--Prerequisite Skills-->  
  
* [[Absolute Value and the Real Line]] <!--- 3213-1.1 --->
+
* [[Real Numbers:Sequences|Sequences:Convergence]]
* [[Countable Sets]] <!--- 3213-1.3 --->
+
* [[Sequences:Limits|Sequences:Limits]]
* [[Applications of the Supremum Property]] <!--- 3213-2.2 --->
 
  
 
|| <!--Student Learning Outcomes-->  
 
|| <!--Student Learning Outcomes-->  
  
* Definition of the limit of a sequence
+
<!-- ------------------------------------------------------------ -->
* The uniqueness of limits in the real numbers
 
* Tails of sequences
 
* Examples of common sequences
 
 
 
 
 
  
 
|-
 
|-
  
 
+
| <!--Date--> Week 7
| <!--Date--> Week
 
  
 
|| <!--Sections-->  
 
|| <!--Sections-->  
  
3.2
+
* Review
 +
* Midterm exam
  
 
|| <!--Topics-->   
 
|| <!--Topics-->   
 
[[The Limit Laws for Sequences]]
 
  
 
|| <!--Prerequisite Skills-->  
 
|| <!--Prerequisite Skills-->  
 
* [[Suprema, Infima, and the Completeness Property|Bounded sets]] <!--- 3213-2.3 --->
 
* [[Sequences and Their Limits]] <!--- 3213-3.1 --->
 
  
 
|| <!--Student Learning Outcomes-->  
 
|| <!--Student Learning Outcomes-->  
  
* Bounded Sequences
+
<!-- ------------------------------------------------------------ -->
* Summation, difference, products, and quotients of sequences
 
* The squeeze theorem for sequences
 
* Divergent Sequences
 
 
 
 
 
  
 
|-
 
|-
  
 
+
| <!--Date--> Week 8
| <!--Date--> Week 4/5   
 
  
 
|| <!--Sections-->  
 
|| <!--Sections-->  
Line 549: Line 212:
 
|| <!--Topics-->   
 
|| <!--Topics-->   
  
[[Monotone Sequences]]
+
* [[Real Numbers:Sequences|Sequences:Monotone]]
 +
* [[Euler's Number]]
  
 
|| <!--Prerequisite Skills-->  
 
|| <!--Prerequisite Skills-->  
  
* [[Mathematical Induction]] <!--- 3213-1.2 --->
+
* [[Proofs:Induction]] <!--- 3213-1.2 --->
* [[Suprema, Infima, and the Completeness Property|Bounded sets]] <!--- 3213-2.3 --->
+
* [[Real Numbers:Bounded Subsets|Bounded Sets]]
* [[The Limit Laws for Sequences|Bounded Sequences]] <!--- 3213-3.2 --->
+
* [[Sequences:Limits|Sequences:Limit Laws]]
  
 
|| <!--Student Learning Outcomes-->  
 
|| <!--Student Learning Outcomes-->  
  
* Increasing and Decreasing sequences
+
<!-- ------------------------------------------------------------ -->
* The Monotone Convergence theorem
 
* Inductively defined sequences
 
* The existence of Euler's Number
 
 
 
  
 
|-
 
|-
  
 
+
| <!--Date--> Week 9
| <!--Date--> Week
 
  
 
|| <!--Sections-->  
 
|| <!--Sections-->  
Line 576: Line 235:
 
|| <!--Topics-->   
 
|| <!--Topics-->   
  
[[Subsequences]]
+
* [[Real Numbers:Sequences|Subsequences]]
 +
* [[Real Numbers:Sequences|Theorem:Monotone Sequence]]
 +
* [[Real Numbers:Sequences|Theorem:Bolzano-Weierstrass]]
 +
* [[Real Numbers:Sequences|Sequences:Limit Superior]]
 +
* [[Real Numbers:Sequences|Sequences:Limit Inferior]]
  
 
|| <!--Prerequisite Skills-->  
 
|| <!--Prerequisite Skills-->  
  
* [[Monotone Sequences]] <!--- 3213-3.3 --->
+
* [[Real Numbers:Sequences|Sequences:Monotone]]
* [[The Limit Laws for Sequences]] <!--- 3213-3.2 --->
+
* [[Sequences:Limits|Sequences:Limit Laws]]
  
 
|| <!--Student Learning Outcomes-->  
 
|| <!--Student Learning Outcomes-->  
  
* Definition of a Subsequence
+
<!-- ------------------------------------------------------------ -->
* If a sequence converges to limit L, then every subsequence of that sequence also converges to L.
 
* Definition of a divergent Sequence
 
* Divergence criteria of a sequence
 
* Monotone subsequence theorem
 
 
 
  
 
|-
 
|-
  
| <!--Date--> Week
+
| <!--Date--> Week 10
  
 
|| <!--Sections-->  
 
|| <!--Sections-->  
  
3.4
+
3.5-3.6
  
 
|| <!--Topics-->  
 
|| <!--Topics-->  
 
    
 
    
[[The Bolzano Weierstrass Theorem]]
+
* [[Real Numbers:Sequences|The Cauchy Criterion]]
 +
* [[Real Numbers:Sequences|Sequences:Contractive]]
 +
* [[Properly Divergent Sequences]]
  
 
|| <!--Prerequisite Skills-->  
 
|| <!--Prerequisite Skills-->  
  
* [[The Limit Laws for Sequences| Bounded Sequences]] <!--- 3213-3.2 --->
+
* [[Real Numbers:Sequences|Sequences:Convergence]]
* [[Subsequences]] <!--- 3213-3.4 --->
+
* [[Sequences:Subsequences]] <!--- 3213-3.4 --->
  
 
|| <!--Student Learning Outcomes-->  
 
|| <!--Student Learning Outcomes-->  
  
* The Bolzano Weierstrass Theorem
+
<!-- ------------------------------------------------------------ -->
* Examples using the Bolzano Weierstrass Theorem
 
 
 
  
 
|-
 
|-
  
 
+
| <!--Date--> Week 11
| <!--Date--> Week 5/6 
 
 
 
|| <!--Sections-->
 
 
 
3.4
 
 
 
|| <!--Topics--> 
 
 
 
[[The Limit Superior and Limit Inferior]]
 
 
 
|| <!--Prerequisite Skills-->
 
 
 
* [[Suprema, Infima, and the Completeness Property|Bounded sets]] <!--- 3213-2.3 --->
 
* [[The Limit Laws for Sequences| Bounded Sequences]] <!--- 3213-3.2 --->
 
 
 
|| <!--Student Learning Outcomes-->
 
 
 
* Definition of the limit superior and limit inferior
 
* Equivalent statements defining the limit superior and limit inferior
 
* A bounded sequence converges if and only if its limit superior equals its limit inferior
 
 
 
 
 
|-
 
 
 
 
 
| <!--Date--> Week 6 
 
 
 
|| <!--Sections-->
 
 
 
3.5
 
 
 
|| <!--Topics--> 
 
 
 
[[The Cauchy Criterion for Convergence]]
 
 
 
|| <!--Prerequisite Skills-->
 
 
 
* [[The Limit of a Sequence]] <!--- 3213-3.1 --->
 
* [[The Limit Laws for Sequences]] <!--- 3213-3.2 --->
 
 
 
|| <!--Student Learning Outcomes-->
 
 
 
* Definition of a Cauchy sequence
 
* A sequence converges if and only if it is a Cauchy sequence
 
* Contractive sequences
 
 
 
 
 
|-
 
 
 
 
 
| <!--Date--> Week 6 
 
 
 
|| <!--Sections-->
 
 
 
3.6
 
 
 
|| <!--Topics--> 
 
 
 
[[Properly Divergent Sequences]]
 
 
 
|| <!--Prerequisite Skills-->
 
 
 
* [[Monotone Sequences]] <!--- 3213-3.3 --->
 
* [[Subsequences|Divergence criteria of a sequence]] <!--- 3213-3.4 --->
 
 
 
|| <!--Student Learning Outcomes-->
 
 
 
* Limits that tend to infinity
 
* Properly divergent sequences
 
 
 
 
 
|-
 
 
 
 
 
| <!--Date--> Week 6/7 
 
  
 
|| <!--Sections-->  
 
|| <!--Sections-->  
Line 700: Line 283:
 
|| <!--Topics-->   
 
|| <!--Topics-->   
  
[[Introduction to Infinite Series]]
+
* [[Series]]
 +
* [[Series|Series:Nth-Term Test]]
 +
* [[Series|Series:Cauchy Criterion]]
 +
* [[Series|Series:Nonnegative Terms]]
 +
* [[Series|Series:Comparison Tests]]
  
 
|| <!--Prerequisite Skills-->  
 
|| <!--Prerequisite Skills-->  
  
* [[The Limit of a Sequence]] <!--- 3213-3.1 --->
+
* [[Real Numbers:Sequences|Sequences:Convergence]] <!--- 3213-3.1 --->
* [[The Cauchy Criterion for Convergence]] <!--- 3213-3.5 --->
+
* [[Sequences:Limits]] <!--- 3213-3.1 --->
 +
* [[Real Numbers:Sequences|The Cauchy Criterion]] <!--- 3213-3.5 --->
  
 
|| <!--Student Learning Outcomes-->  
 
|| <!--Student Learning Outcomes-->  
  
* Sequences of partial sums
+
<!-- ------------------------------------------------------------ -->
* If a series converges, then the sequence of coefficients for that series  must converge to zero.
 
* Examples of common series
 
* Comparison tests for series
 
  
 
|-
 
|-
  
 
+
| <!--Date--> Week 12
| <!--Date--> Week 12  
 
  
 
|| <!--Sections-->  
 
|| <!--Sections-->  
Line 723: Line 307:
 
4.1
 
4.1
  
|| <!--Topics-->  
+
|| <!--Topics-->  
  
[[Cluster Points]]
+
* [[Neighborhoods in R]]
 +
* [[Cluster Points]]
 +
* [[The Limit of a Function|Limits of Real Functions]]
  
 
|| <!--Prerequisite Skills-->  
 
|| <!--Prerequisite Skills-->  
  
* [[Absolute Value and the Real Line|Epsilon neighborhoods]] <!--- 3213-2.2 --->
+
* [[Real Numbers:Sequences|Sequences:Convergence]] <!--- 3213-3.1 --->
* [[The Limit of a Sequence]] <!--- 3213-3.1 --->
+
* [[Sequences:Limits]] <!--- 3213-3.1 --->
 +
* [[Real Numbers:Sequences|The Cauchy Criterion]] <!--- 3213-3.5 --->
  
 
|| <!--Student Learning Outcomes-->  
 
|| <!--Student Learning Outcomes-->  
  
* Definition of a cluster point
+
<!-- ------------------------------------------------------------ -->
* The cluster point as the limit of a sequence
 
 
 
  
 
|-
 
|-
  
  
| <!--Date--> Week 12 
+
| <!--Date--> Week 13
 
 
|| <!--Sections-->
 
 
 
4.1
 
 
 
|| <!--Topics--> 
 
 
 
[[The Definition of the Limit of a Function]]
 
 
 
|| <!--Prerequisite Skills-->
 
 
 
* [[Cluster Point]] <!--- 3213-4.1 --->
 
* [[Intervals]] <!--- 3213-2.5 --->
 
 
 
|| <!--Student Learning Outcomes-->
 
 
 
* The definition of the limit of a function at a point
 
* The uniqueness of limits at cluster points
 
* Examples of limits of functions
 
 
 
|-
 
 
 
 
 
| <!--Date--> Week 12/13  
 
 
 
|| <!--Sections-->
 
 
 
4.1
 
 
 
|| <!--Topics--> 
 
 
 
[[The Sequential Criterion and Divergence Criteria]]
 
 
 
|| <!--Prerequisite Skills-->
 
 
 
* [[The Limit of a Sequence]] <!--- 3213-3.1 --->
 
* [[The Definition of the Limit of a Function]] <!--- 3213-4.1 --->
 
 
 
|| <!--Student Learning Outcomes-->
 
 
 
* The sequential criterion for limits of functions at a point
 
* Divergence criteria for limits
 
* The signum function
 
 
 
 
 
|-
 
 
 
 
 
| <!--Date--> Week 13 
 
  
 
|| <!--Sections-->  
 
|| <!--Sections-->  
Line 798: Line 334:
 
|| <!--Topics-->   
 
|| <!--Topics-->   
  
[[The Limit Theorems for Functions]]
+
* [[Real Function Limits:Sequential Criterion|The Sequential Criterion for Limits]]
 +
* [[Divergence Criteria]]
  
 
|| <!--Prerequisite Skills-->  
 
|| <!--Prerequisite Skills-->  
  
* [[The Definition of the Limit of a Function]] <!--- 3213-4.1 --->
+
* [[Real Numbers:Sequences|Sequences:Convergence]] <!--- 3213-3.1 --->
* [[The Sequential Criterion and Divergence Criteria]]<!--- 3213-4.1 --->
+
* [[Sequences:Limits]] <!--- 3213-3.1 --->
  
 
|| <!--Student Learning Outcomes-->  
 
|| <!--Student Learning Outcomes-->  
  
* Functions bounded on a neighborhood of a cluster point
+
<!-- ------------------------------------------------------------ -->
* Sums, differences, products, and quotients of limits
 
* The squeeze theorem for limits of functions
 
* Examples of Limits using the limit theorems
 
 
 
  
 
|-
 
|-
  
 
+
| <!--Date--> Week 14
| <!--Date--> Week 14  
 
  
 
|| <!--Sections-->  
 
|| <!--Sections-->  
Line 822: Line 354:
 
4.3
 
4.3
  
|| <!--Topics-->  
+
|| <!--Topics-->  
  
[[One Sided Limits]]
+
* [[Real Function Limits:One-Sided|One-Sided Limits of Functions]]
 +
* [[Real Function Limits:Infinite|Infinite Limits of Functions]]
 +
* [[Real Function Limits:Infinite|Limits of Functions at Infinity]]
  
 
|| <!--Prerequisite Skills-->  
 
|| <!--Prerequisite Skills-->  
  
* [[The Definition of the Limit of a Function]] <!--- 3213-4.1 --->
+
* [[The Limit of a Function|Limits of Real Functions]]
* [[The Sequential Criterion and Divergence Criteria]]<!--- 3213-4.1 --->
+
* [[Divergence Criteria]]
  
 
|| <!--Student Learning Outcomes-->  
 
|| <!--Student Learning Outcomes-->  
  
* The definition of the right and left hand limits of a function at a point
+
<!-- ------------------------------------------------------------ -->
* The sequential criterion for the left and right hand limits
 
* The limit of a function at a point exists if and only if its left and right hand limits are equal
 
 
 
  
 
|-
 
|-
  
| <!--Date--> Week 14/15
+
|}
 
 
|| <!--Sections-->
 
 
 
4.3
 
 
 
|| <!--Topics--> 
 
 
 
[[Infinite Limits and Limits at Infinity]]
 
 
 
|| <!--Prerequisite Skills-->
 
 
 
* [[The Definition of the Limit of a Function]] <!--- 3213-4.1 --->
 
* [[The Sequential Criterion and Divergence Criteria]]<!--- 3213-4.1 --->
 
* [[One Sided Limits]] <!--- 3213-4.1 --->
 
 
 
|| <!--Student Learning Outcomes-->
 
 
 
* The definition of an infinite limit
 
* If the function f is less than the function g on a specified domain and f tends to infinity, then g tends to infinity on this domain as well.
 
* The definition of a limit has its independent variable approaches infinity
 
* The sequential criterion for limits at infinity
 
 
 
 
 
|-
 

Latest revision as of 20:56, 24 March 2023

Catalog entry:

Prerequisites: MAT 1224 and MAT 3013.

Content: Axiomatic definition of real numbers, including order properties and completeness; infinite sequences and their convergence; basic notions related to series and their convergence; functions and function limits. Introduction to topology of the real line. Emphasis on theorem proving.


Sample textbook: Introduction to Real Analysis by Bartle and Sherbert

A comprehensive list of all undergraduate math courses at UTSA can be found here.

The Wikipedia summary of Real Analysis.

Topics List

Date Sections Topics Prerequisite Skills Student Learning Outcomes
Week 1

1.1


Week 2

1.2 & 1.3





Week 3

2.1-2.2


Week 4

2.3-2.4


Week 5

2.5 & 3.1


Week 6

3.2


Week 7
  • Review
  • Midterm exam


Week 8

3.3


Week 9

3.4


Week 10

3.5-3.6


Week 11

3.7


Week 12

4.1


Week 13

4.2


Week 14

4.3