Difference between revisions of "MAT2214"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
(Began table)
 
m (→‎Topics List: Improving Consistency of Formatting)
 
(107 intermediate revisions by 6 users not shown)
Line 1: Line 1:
 +
The textbook for this course is
 +
[https://openstax.org/details/books/calculus-volume-3 Calculus (Volume 3) by Gilbert Strang, Edwin Herman, et al.]
 +
 
==Topics List==
 
==Topics List==
 
{| class="wikitable sortable"
 
{| class="wikitable sortable"
 
! Date !! Sections !! Topics !! Prerequisite Skills !! Student Learning Outcomes
 
! Date !! Sections !! Topics !! Prerequisite Skills !! Student Learning Outcomes
 +
|- 
  
|- 
 
  
|Weeks 1 and 2
+
|Week 1
  
 
||
 
||
 
+
1.1
<div style="text-align: center;">1.3</div>
 
 
 
 
||
 
||
 
          
 
          
[[Vectors and the Geometry of Space]]  
+
[[Polar Coordinates]]  
  
 
||
 
||
 
+
* [[Trigonometric Functions: Unit Circle Approach]]
* One-dimensional coordinate system.
+
* [[Inverse Trigonometric Functions]]
* Two-dimensional coordinate systems.
 
* Algebraic equations.
 
 
 
 
||
 
||
 +
* Plot points using polar coordinates and find several polar coordinates of a single point
 +
* Convert polar coordinates to rectangular coordinates and vice versa
 +
* Transform equations from polar form to rectangular form and vice versa
 +
|-
  
* Three-dimensional coordinate systems
 
* Vectors
 
* Linear operations
 
* The dot product
 
* The cross product
 
* Lines and planes in space
 
* Cylinders and quadratic surfaces
 
 
 
|-
 
  
  
|Week&nbsp;3 
+
|Week 1
  
 
||
 
||
 
+
1.2
<div style="text-align: center;">1.5</div>
 
 
 
 
||
 
||
 
+
       
 
+
[[Three-Dimensional Coordinate Systems]]  
[[Vector-valued Functions and Motion in Space]]  
 
  
 
||
 
||
  
 +
* [[Two-dimensional coordinate systems]]
 +
* [[Solving Equations and Inequalities| Algebraic Expressions]]
  
 
* [[The Limit of a Function]] <!-- 1214-2.2 -->
 
* [[Continuity]] <!-- 1214-3.5 -->
 
* [[The Derivative of a Function]] <!-- 1214-2.1 -->
 
* [[The Definite Integral|Solving Basic Integrals]] <!-- 1214-5.2 -->
 
* [[Trigonometric Integrals]] <!-- 1224-3.2 -->
 
* [[Integration by Parts]] <!-- 1224-3.1 -->
 
* [[Integration by Substitution]] <!-- 1224-1.5 -->
 
  
  
 
||
 
||
  
* Determine limits and continuity of vector-valued functions.  
+
* Three-dimensional coordinate systems.
* Determine derivatives and integrals of vector-valued functions.  
+
* Distance Formula in Space.  
 
+
* Standard Equation for a Sphere.
 
|-
 
|-
  
  
|Week&nbsp;3
+
|Weeks 1/2 
  
 
||
 
||
 
+
2.1
<div style="text-align: center;">1.2</div>
 
 
 
 
||
 
||
 
    
 
    
[[Area between Curves]]
 
  
 +
[[Vectors in The Plane, Space]]
  
 
||
 
||
  
* [[Toolkit Functions|Graphs of elementary functions, including points of intersection.]] <!-- 1073-Mod 1.2 -->
+
* [[Linear Equations|Line Segments]]  
* [[Antiderivatives]] <!-- 1214-4.10 -->
+
* [[Distance Formula| Distance Formula]]  
  
 
||
 
||
  
* Find the area of plane regions bounded by the graphs of functions.
+
* Vector Algebra Operations
 +
* The Magnitude of a vector
 +
* Unit Vectors
 +
* The Midpoint of a Line Segment
 +
* The Vector projection
 +
|-
  
|-
 
  
  
|Week&nbsp;3/4 
+
|Week 2
  
 
||
 
||
 
+
2.3
<div style="text-align: center;">2.2</div>
 
 
 
 
||
 
||
 
    
 
    
[[Determining Volumes by Slicing]]  
+
[[The Dot Product]]  
 
 
||
 
  
* [[Toolkit Functions| Sketch the graphs of elementary functions]] <!-- 1073-Mod 1.2 -->
 
* '''[[Areas of basic Shapes]]''' <!-- Grades 6-12 -->
 
* [[The Definite Integral|Solving Basic Integrals]] <!-- 1214-5.2 -->
 
  
 
||
 
||
  
* Find the volume of solid regions with a known cross-sectional area.
+
* [[Trigonometric Functions|Basic Trig Functions]] 
 +
* [[Vectors]] 
  
 
||
 
||
 
+
* Definition of  Dot Product
 +
* Properties of Dot Product
 +
* Angle between vectors
 +
* Orthogonal vectors
  
 
|-
 
|-
  
  
|Week&nbsp;4 
+
|Week 2
  
 
||
 
||
 
+
2.4
<div style="text-align: center;">2.3</div>
 
 
 
 
||
 
||
 
    
 
    
 
+
[[The Cross Product]]  
[[The Shell Method]]  
 
  
 
||
 
||
  
* [[Toolkit Functions| Sketch the graphs of elementary functions]] <!-- 1073-Mod 1.2 -->
+
* [[Trigonometric Functions|Basic Trig Functions]] 
* [[The Definite Integral|Solving Basic Integrals]] <!-- 1214-5.2 -->
+
* [[Determinants]]  
 +
* [[Vectors]]
  
 
||
 
||
  
* Find the volume of solid regions obtained by revolving a plane region about a line.
+
* Definition of Cross Product
 
+
* Properties of the cross product
||
+
* Area of a parallelogram
 +
* Cross product as a determinant
  
  
 +
|-
  
|-
 
  
  
|Week&nbsp;4/5
+
|Week 3
  
 
||
 
||
 
+
2.5
<div style="text-align: center;">2.4</div>
 
 
 
 
||
 
||
 
    
 
    
  
[[Arc Length and Surface Area]]  
+
[[Equations of Lines, Planes and Surfaces in Space]]  
  
 
||
 
||
  
* [[Toolkit Functions| Sketch the graphs of elementary functions]] <!-- 1073-Mod 1.2 -->
+
* [[The Dot Product]]
* [[The Definite Integral|Solving Basic Integrals]] <!-- 1214-5.2 -->
+
* [[The Cross Product]]
 +
* [[Quadratic Functions]]  
 +
* [[Parametric Equations]]  
  
 
||
 
||
  
* Find the arc length of a plane curve
+
* Write the vector, parametric equation of a line through a given point in a given direction, and a line through two given points.
* The area of the surface obtained by revolving a curve about one of the coordinate axes.
+
* Find the distance from a point to a given line.
||
+
* Write the equation of a plane through a given point with a given normal, and a plane through three given points.
 +
* Find the distance from a point to a given plane.
  
  
Line 169: Line 151:
  
  
|Week&nbsp;5/6
+
|Week 3
  
 
||
 
||
 
+
2.6
<div style="text-align: center;">2.5</div>
 
 
 
 
||
 
||
 
    
 
    
  
[[Physical Applications]]
+
[[Equations of Lines, Planes and Surfaces in Space|Cylinders and Quadratic Surfaces]]  
  
 
||
 
||
  
* [[The Definite Integral|Solving Basic Integrals]] <!-- 1214-5.2 -->
+
* [[Quadratic Functions]]  
* '''Knowledge of basic physics (e.g. mass, force, work).'''
+
* [[Parametric Equations]]
 +
* [[Conics]]
  
 
||
 
||
  
* Find the mass of an object with a given density function.
+
* Find equations for cylinders that are generated by rotating lines that are parallel to a plane
* Find the work done by a variable force
+
* Understand basic quadratic surfaces
* Find the work done in pumping fluid from a tank
+
* Understand general quadratic surfaces
* Find the hydrostatic force on a vertical plate.
 
 
 
||
 
  
  
Line 198: Line 176:
  
  
|Week&nbsp;6/7
+
|Weeks 3/4
  
 
||
 
||
 +
3.1, 3.2
 +
||
  
<div style="text-align: center;">2.6</div>
+
[[Curves in Space and Vector-Valued Functions]]
  
 
||
 
||
 
 
  
[[Moments and Center of Mass]]
+
* [[Parametric Equations]]
 +
* [[Vectors]] 
 +
* [[The Derivative as a Function]]
 +
* [[The Limit of a Function]]
 +
* [[Continuity]]
 +
* [[The Dot Product]]
 +
* [[The Cross Product]]  
  
 
||
 
||
  
* [[Toolkit Functions|Sketching Common Functions]] <!-- 1073-Mod 1.2 -->
+
* Vector functions
* [[The Definite Integral|Solving Basic Integrals]] <!-- 1214-5.2 -->
+
* Limits of vector functions
 +
* Continuity of vector functions
 +
* Differentiation rules for vector functions
 +
* Curves and paths in space
  
||
 
  
* Find the moments and center of mass of a thin plate of uniform density.
+
|-
  
||
 
  
  
|-
+
|Week 4
 
 
 
 
|Week&nbsp;6
 
  
 
||
 
||
 
+
3.3
<div style="text-align: center;">3.1</div>
 
 
 
 
||
 
||
 
    
 
    
 
+
[[Arc Length]]
[[Integration by Parts]]
 
  
 
||
 
||
  
* [[Antiderivatives]] <!-- 1214-4.10 -->
+
* [[Distance Formula| The Length of a Line Segment]]
* [[Linear Approximations and Differentials| Knowledge of Differentials ]] <!-- 1214-4.2 -->
+
* [[Curves in Space and Vector-Valued Functions|Vector Functions]]  
* [[Differentiation Rules|Rules for finding Derivatives]] <!-- 1214-3.3 -->
+
* [[Line Integrals|Integrals of Vector Functions]], [[Derivatives of Vector Functions]]
  
 
||
 
||
  
* Integrate products of certain functions.
+
* The arc Length of a vector function
* Integrate logarithmic and inverse trigonometric functions.
+
* Arc length parameterization
 
 
||
 
  
 +
|-
  
|-
 
  
  
|Week&nbsp;7
+
|Weeks 4/5
  
 
||
 
||
 
+
3.4
<div style="text-align: center;">3.2</div>
 
 
||
 
||
 
    
 
    
 
+
[[Motion in Space]]
[[Trigonometric Integrals]]
 
  
 
||
 
||
 
+
* [[Vectors]]
* [[Integration by Substitution]] <!-- 1224-1.5 -->
+
* [[Parametric Equations]]  
* [[Trigonometric Equations|Solve trigonometric equations]] <!-- 1093-3.3 -->
+
* [[The Cross Product]]  
* [[Trig. Identities|Trigonometric Identities]] <!-- 1093-3.4 -->
+
* [[Derivatives of Vector Functions]]
 
 
 
||
 
||
 +
* The Unit tangent vector
 +
* The curvature
 +
* The Principal Unit Normal Vector
 +
* The Binormal Vector
 +
* The tangential and normal components of acceleration
 +
* The Torsion
  
* Integrate products of powers of sin(x) and cos(x) as well as sec(x) and tan(x).
+
|-
  
||
 
  
  
 
+
|Week 5/6  
|-
 
 
 
 
 
|Week&nbsp;7/8  
 
  
 
||
 
||
 
+
4.1
<div style="text-align: center;">3.3</div>
 
 
 
 
||
 
||
 
    
 
    
  
[[Trigonometric Substitution]]
+
[[Functions of Several Variables]]
  
 
||
 
||
  
* [[Trig. Identities|Trigonometric Identities]] <!-- 1093-3.4 -->
+
* [[Domain of a Function]]  
* [[Integration by Substitution]] <!-- 1224-1.5 -->
+
* [[Range of a Function]]  
* [[Trigonometric Integrals]] <!-- 1224-3.2 -->
+
* [[Solving Equations and Inequalities]]  
 
+
* [[Graphs| Graphing a Function]]
  
 
||
 
||
 
+
* Functions of two variables
* Integrate the square root of a sum or difference of squares.
+
* Functions of three variables
 
+
* Domain and range of multivariable functions
 
+
* Bounded regions
 
+
* Graphs and level curves of two variable functions
 +
* Level surfaces of three variable functions
 
|-
 
|-
  
  
|Week&nbsp;6/7
+
|Week 6
  
 
||
 
||
 
+
4.2
<div style="text-align: center;">3.8</div>
 
 
 
 
||
 
||
 
    
 
    
  
[[Partial Fractions]]
+
[[Limit and Continuity of Function of Several Variables]]
  
 
||
 
||
  
* [[Dividing Polynomials]] <!-- 1073-7 Mod 3.1 -->
+
* [[Continuity]]  
* [[Antiderivatives]] <!-- 1214-4.10 -->
+
* [[The Limit Laws]]  
* [[Systems of Linear Equations]] <!-- 1073-Mod 12.1 and 12.2 -->
+
* [[Composition of Functions]]  
* '''[[Partial Fraction Decomposition]]''' <!-- DNE (recommend 1093-1.7) -->
+
* [[The Dot Product]]  
  
 
||
 
||
  
* Integrate rational functions whose denominator is a product of linear and quadratic polynomials.
+
* Limits of functions of two variables
 
+
* Limits of functions of more than two variables
 
+
* Properties of limits of functions of several variables
 +
* Two path test of non-existing of a limit
 +
* Continuity for functions of several variables
 +
* Continuity of composition
 +
* Extreme values on closed and bounded domains
 
|-
 
|-
  
  
|Week&nbsp;7
+
|Week 6
  
 
||
 
||
 
+
4.3
<div style="text-align: center;">3.7</div>
 
 
 
 
||   
 
||   
  
[[Improper Integrals]]
+
[[Partial Derivatives]]
  
 
||
 
||
  
* [[Trigonometric Integrals]] <!-- 1224-3.2 -->
+
* [[The Derivative as a Function|The first]] and [[The Second Derivative|second derivative]] of a function
* [[Integration by Substitution]] <!-- 1224-1.5 -->
+
* [[Limit and Continuity of Function of Several Variables]]  
* [[Integration by Parts]] <!-- 1224-3.1 -->
+
 
* [[Limits of Functions]] <!-- 1214-2.2 -->
 
* [[Limits at infinity and asymptotes| Limits at Infinity]] <!-- 1224-4.6 -->
 
  
 
||
 
||
 
+
* Partial derivatives for functions of two variables
* Recognize improper integrals and determine their convergence or divergence.
+
* Partial derivatives for functions of more than two variables
 
+
* Partial derivatives and continuity
 
+
* Second order partial derivatives
 +
* Mixed derivative theorem
 
|-
 
|-
  
  
|Week&nbsp;8 
+
|Week
  
 
||
 
||
 
+
4.4
<div style="text-align: center;">4.1</div>
 
 
 
 
||   
 
||   
  
[[Basics of Differential Equations]]
+
[[Directional Derivatives and Gradient Vectors]]
  
 
||
 
||
 
+
* [[Trigonometric Functions]] 
* [[The Derivative as a Function]] <!-- 1214-3.2 -->
+
* [[Vectors, Unit Vectors]]
* [[Differentiation Rules]] <!-- 1214-3.3 -->
+
* [[Partial Derivatives]]
* [[Implicit Differentiation]] <!-- 1214-3.8 -->
+
* [[Gradients]]
 
+
* [[The Dot Product]]
 
||
 
||
 
+
* Directional derivatives for functions of two variables
* Classify an Ordinary Differential Equation according to order and linearity.
+
* Gradients
* Verify that a function is a solution of an Ordinary Differential Equation or an initial value problem.
+
* Properties of directional derivatives
 
+
* Tangents to level curves
 
+
* Directional derivatives for functions of three variables
 
 
 
|-
 
|-
  
  
|Week&nbsp;8/9   
+
|Week 7
  
 
||
 
||
 
+
4.5
<div style="text-align: center;">4.2</div>
 
 
 
 
||   
 
||   
 +
[[Tangent Plane]],
 +
[[Differentiability]]
  
[[Direction Fields and Numerical Methods]]
 
  
 
||
 
||
 
+
* [[Partial Derivatives]]   
* [[Linear Equations|Slope of a Line]]  <!-- Not Directly Mentioned (recommend 1073-Mod.R -->
+
* [[Parametric Equations]] of Lines
* [[Defining the Derivative|Equation of the tangent line]] <!-- 1214-3.1 -->
+
* [[Equations of Lines, Planes and Surfaces in Space]]  
* [[Derivatives as Rates of Change|Leibnitz notation of the derivative]] <!-- 1214-3.4 -->
 
  
 
||
 
||
 +
* Determine the equation of a plane tangent to a given surface at a point
 +
* Determine the parametric equation of a normal line to a given surface at a point
 +
* The linear approximation of a function of two variables at a point
 +
* The definition of differentiability for  a function of two variables
 +
* Differentiability implies  Continuity 
 +
* Continuity of First Partial Derivatives implies Differentiability
 +
* The definition of total differentiability for  a function of two variables
 +
* Use the total differential to approximate the change in a function of two variables
 +
|-
  
* Sketch the direction field of a first-order ODE(Ordinary Differential Equation) by hand
 
* Using direction field, find equilibria of an autonomous ODE.
 
* Determine the stability of equilibria using a phase line diagram.
 
  
  
 +
|Week 7
  
|-
+
||
 +
4.6
 +
|| 
  
 +
[[The Chain Rule for Functions of more than One Variable]]
  
|Week&nbsp;9 
+
||
 +
* [[Differentiation Rules]]
 +
* [[The Chain Rule]]
 +
* [[Partial Derivatives]] 
  
 
||
 
||
 +
* Chain rule for functions of one independent variable and several intermediate variables.
 +
* Chain rule for functions of two independent variable and several intermediate variables.
 +
* Method for implicit differentiation.
 +
* The general chain rule for functions of several independent variables 
 +
|-
 +
|Week 8
  
<div style="text-align: center;">4.3</div>
+
||
 
+
4.7
 
||   
 
||   
  
[[Separable Equations]]
+
[[Maxima and Minima Problems]]
  
 
||
 
||
 
+
* [[Extreme values on closed and bounded domains]]  
* [[Trigonometric Integrals]] <!-- 1224-3.2 -->
+
* [[Partial Derivatives]]
* [[Integration by Substitution]] <!-- 1224-1.5 -->
+
* [[Maxima and Minima|Maxima, Minima and Critical Points of a Function]]  
* [[Integration by Parts]] <!-- 1224-3.1 -->
+
* [[Limit and Continuity of Function of Several Variables]]  
* [[Linear Approximations and Differentials]] <!-- 1224-4.2 -->
 
  
 
||
 
||
 
+
* The derivative test for local extreme values
* Recognize and solve separable differential equations
+
* Extreme values on closed and bounded domains
* Develop and analyze elementary mathematical models.
+
* Critical points and saddle points for functions of two variables
 
+
* Second derivative test for local extreme values
 
+
* Absolute maxima and minima on closed and bounded regions
 
 
 
|-
 
|-
 
+
|Week 8/9
 
 
|Week&nbsp;10/11 
 
  
 
||
 
||
 
+
4.8
<div style="text-align: center;">4.4</div>
 
 
 
 
||   
 
||   
  
[[Exponential Growth and Decay, The Logistic Equation]]
+
[[Lagrange Multipliers]]
  
 
||
 
||
  
* [[Separable Equations]] <!-- 1224-4.3-->
+
* [[Partial Derivatives]]
* [[Continuity]] <!-- 1214-2.4 -->
+
* [[Critical Points of a Function]]  
* [[Linear Equations|Slope of a Line]] <!-- 1214-3.1 -->
 
* [[Direction Fields and Numerical Methods| Find Equalibria and determine their Stability]] <!-- 1224-3.2 -->
 
  
 
||
 
||
 +
* Lagrange Multipliers with One Constraint
 +
* Lagrange Multipliers with Two Constraints
 +
|-
  
* Solve the exponential growth/decay equations and the logistic equation.
 
* Describe the differences between these two models for population growth.
 
  
  
 
+
|Week 9/10
|-
 
 
 
 
 
|Week&nbsp;11 
 
  
 
||
 
||
 
+
5.1
<div style="text-align: center;">5.1</div>
 
 
 
 
||   
 
||   
  
[[Sequences]]
+
[[Multiple Integrals|Double Integrals over Rectangular Regions]]
  
 
||
 
||
  
* [[Limits at Infinity and Asymptotes | Infinite Limits]] <!-- 1214-4.6-->
+
* [[Approximating Areas]]  
* ''' [[Increasing and Decreasing Functions]] <!-- DNE (recommend 1023-2.2) -->'''
+
* [[The Definite Integral|Limits of Riemann Sums]]  
  
 
||
 
||
 
+
* Double Integral is the limit of Double Sums.
* Find the formula for the general term of a sequence.
+
* Double Integrals over Rectangular Regions.
* Discuss the convergence or divergence of a sequence.
+
* Interated Integrals.
* Find the limit of a convergent sequence.  
+
* Fubini's Theorem (part 1).
* Determine whether a sequence is monotone.
 
 
 
 
 
 
|-
 
|-
  
  
|Week&nbsp;11/12
+
|Week 10
  
 
||
 
||
 
+
5.2
<div style="text-align: center;">5.2</div>
 
 
 
 
||   
 
||   
  
[[Series]]
+
[[Multiple Integrals|Double Integrals over General Regions]]
  
 
||
 
||
  
* '''[[Sigma notation]]''' <!-- DNE (recommend 1093) -->
+
* [[Continuity]]  
* [[Sequences]] <!-- 10224-5.1-->
+
* [[Determining Volumes by Slicing]]
 +
* [[Multiple Integrals|Double and Iterated Integrals over Rectangular regions]]  
  
 
||
 
||
 +
* Double integrals over bounded, general regions.
 +
* Properties of double Integrals.
 +
* Fubini's theorem (part 2)
 +
* Changing the order of Integration.
 +
* Calculating Volumes, Areas and Average Values
 +
|-
  
* Define the convergence or divergence of an infinite series.
 
* Find the sum of a geometric or telescoping series.
 
 
|-
 
  
  
|Week&nbsp;12
+
|Week 11   
  
 
||
 
||
 
+
5.3
<div style="text-align: center;">5.3</div>
 
 
 
 
||   
 
||   
  
[[The Divergence and Integral Tests]]
+
[[Multiple Integrals|Double Integrals in Polar Coordinates]]
  
 
||
 
||
  
* [[Continuity]] <!-- 1214-3.5 -->
+
* [[Multiple Integrals|Double Integrals over General Regions]]  
* [[Antiderivatives]] <!-- 1214-4.10 -->
+
* [[Polar Coordinates]]  
* [[The Limit of a Function|When a Limit is Undefined]] <!-- 1214-2.2 -->
 
* [[Limits at Infinity and Asymptotes | Infinite Limits]] <!-- 1214-4.6-->
 
  
 
||
 
||
 
+
* Double Integrals over rectangular polar  regions.
* Determine the convergence or divergence of a series using the Divergence or Integral Tests.
+
* Double Integrals over general polar regions.
* Estimate the sum of a series using the Remainder Estimate Theorem.
+
* Changing Cartesian Integrals into Polar Integrals.
 
+
* Using Double Integrals in Polar Coordinates to find Volumes, Areas.
 
 
 
 
 
|-
 
|-
  
  
|Week&nbsp;13/14 
+
|Week 11
  
 
||
 
||
 
+
5.4
<div style="text-align: center;">5.4</div>
 
 
 
 
||  
 
||  
  
[[Comparison Tests]]
+
[[Multiple Integrals|Triple Integrals in Rectangular Coordinates]]
  
 
||
 
||
  
* [[Series]] <!-- 1224-5.2 -->
+
* [[Multiple Integrals|Double Integrals]]  
* ''' [[Increasing and Decreasing Functions]] <!-- DNE (recommend 1023-2.2) -->'''
+
* [[Multiple Integrals|Area by Double Integration]]  
* [[Limits at Infinity and Asymptotes | Infinite Limits]] <!-- 1214-4.6-->
+
* [[Change of Variables]]  
  
 
||
 
||
  
* Determine the convergence or divergence of a series using the Direct or Limit Comparison Tests.
+
* Triple Integrals over general bounded regions.
 
+
* Finding Volumes by evaluating Triple Integrals.
 +
* Average value of a function in space.
 +
* Changing Integration Order and Coordinate systems.
 +
|-
  
|-
 
  
  
|Week&nbsp;14   
+
|Week 12
  
 
||
 
||
 +
5.5
 +
||
  
<div style="text-align: center;">5.5</div>
+
[[Multiple Integrals|Triple Integrals in Cylindrical and Spherical Coordinates]]
 
 
|| 
 
 
 
[[Alternating Series]]
 
  
 
||
 
||
  
* [[Toolkit Functions| Absolute Value Function]] <!-- 1073-Mod 1.2 -->
+
* [[Multiple Integrals|Double Integrals in Polar Form]]
* ''' [[Increasing and Decreasing Functions]] <!-- DNE (recommend 1023-2.2) -->'''
+
* [[Multiple Integrals|Triple Integrals in Rectangular Coordinates]]  
* [[Limits at Infinity and Asymptotes | Infinite Limits]] <!-- 1214-4.6-->
 
  
 
||
 
||
  
* Determine the convergence or divergence of alternating series.
+
* Integrations  in Cylindrical Coordinates.
* Estimate the sum of an alternating series.
+
* Equations relating rectangular and cylindrical coordinates.
* Describe the difference between conditional and absolute convergence.
+
* Changing Cartesian integrations into Cylindrical integrations.
 
+
* Integrations in Spherical coordinates.
 
+
* Equations relating spherical coordinates to Cartesian and cylindrical coordinates.
 +
* Changing Cartesian integrations into Cylindrical integrations.
 
|-
 
|-
  
  
|Week&nbsp;15 
+
|Week 13 
  
 
||
 
||
 
+
5.6
<div style="text-align: center;">5.6</div>
+
||
 
+
 
||  
+
[[Multiple Integrals|Applications of Multiple Integrals]]
 
 
[[Ratio and Root Tests]]
 
  
 
||
 
||
  
* '''[[Factorials]]''' <!-- Grades 6-12 -->
+
* [[Multiple Integrals|Double Integral]]  
* [[Limits at Infinity and Asymptotes | Infinite Limits]] <!-- 1214-4.6-->
+
* [[Multiple Integrals|Triple Integrals]]  
* [[Toolkit Functions| Square root and Absolute value Functions]] <!-- 1073-Mod 1.2 -->
 
 
 
  
 
||
 
||
  
* Determine the convergence or divergence of infinite series using the ratio and root tests..
+
* Finding Masses, Moments, Centers of Masses, Moments of Inertia in Two Dimensions.
 
+
* Finding Masses, Moments, Centers of Masses, Moments of Inertia in Three Dimensions.
 
 
 
 
 
|-
 
|-
 
+
|Week 13/14 
|Week&nbsp;15/16 
 
  
 
||
 
||
 
+
5.7
<div style="text-align: center;">6.1</div>
 
 
 
 
||
 
||
 
    
 
    
[[Power Series and Functions]]
+
[[Multiple Integrals|Change of Variables in Multiple Integrals]]
  
 
||
 
||
  
* [[Intro to Polynomial Functions| Polynomials]] <!-- 1073-Mod 2.1 -->
+
* [[Multiple Integrals|Double Integral]]  
* [[Continuity]] <!-- 1214-3.5 -->
+
* [[Multiple Integrals|Triple Integrals]]  
* [[Series]] <!-- 1224-5.2 -->
 
* [[Ratio and Root Tests]] <!-- 1224-5.6 -->
 
  
 
||
 
||
  
* Recognize a power series.
+
* Determine the image of a region under a given transformation of variables.
* Find its interval and radius of convergence.
+
* Compute the Jacobian of a given transformation.
* Represent certain functions as power series.
+
* Evaluate a double integral using a change of variables.
 
+
* Evaluate a triple integral using a change of variables.
 
 
 
 
 
|-
 
|-
 +
|Week 14
  
 +
||
 +
6.1
 +
||
  
|Week&nbsp;16
+
[[Vector Fields]]
  
 
||
 
||
  
<div style="text-align: center;">6.2</div>
+
* [[The Dot Product]] <!-- 2214-12.3 -->
 +
* [[Directional Derivatives and Gradient Vectors]]
 +
||
 +
* Vector Fields in a plane.
 +
* Vector Fields in Space.
 +
* Potential Functions.
 +
* Gradient Fields, Conservative Vector Fields.
 +
* The Cross-Partial Test for Conservative Vector Fields.
 +
* Determining Whether a Vector Field is conservative.
 +
|-
  
||
 
  
[[Properties of Power Series]]
+
|Week 14
  
 
||
 
||
 +
6.2
 +
|| 
  
* [[Antiderivatives|Indefinite integrals]] <!-- 1214-4.10 -->
+
[[Line Integrals]]
* [[The Limit Laws]] <!-- 1214-2.3 -->
 
* [[Power Series and Functions]] <!-- 1224-6.1 -->
 
  
 
||
 
||
  
* Differentiate and integrate power series term-by-term.
+
* [[Parametric Equations]]
* Recognize certain continuous functions as power series on their radius of convergence.
+
* [[Curves in Space and Vector-Valued Functions]]
 +
* [[Arc Length]]
  
 +
||
 +
* Line Integrals of  functions a long a smooth curves in a planer or in space
 +
* Line Integrals of  of vector fields along an oriented curves in a plane or space..
 +
* Properties of Vector Line Integrals.
 +
* Evaluating  Line Integrals.
 +
* Applications of line integrals: Calculating Arc Length, the Mass of a wire, Work done by a force, Flux across a curve, Circulation of a force.
 +
|-
  
  
  
|-
 
  
  
|Week&nbsp;17  
+
|Week 14/15  
  
 +
||
 +
6.3
 
||
 
||
  
<div style="text-align: center;">6.3</div>
+
[[Conservative Vector Fields]]
 
 
|| 
 
 
 
[[Taylor and Maclaurin Series]]
 
  
 
||
 
||
  
* [[The Derivative of a Function]] <!-- 1214-2.1 -->
+
* [[Vector Fields and Line Integrals]]  
* [[Power Series and Functions]] <!-- 1224-6.1 -->
+
* [[Partial Derivatives]]
* [[Properties of Power Series]] <!-- 1224-6.2 -->
 
  
 
||
 
||
 
+
* Describe simple and closed curves
* Find the Taylor or Maclaurin series representation of a function.
+
* Define connected and simply connected regions.
* Find the radius of convergence of a Taylor Series.
+
* Explain how to test a vector field to determine whether it is conservative.
* Estimate the remainder in a Taylor polynomial approximation.
+
* Find a potential function for a conservative vector field.
 
+
* Use the Fundamental Theorem for Line Integrals to evaluate a line integral of a vector field.
 
 
 
 
 
 
 
|-
 
|-
  
  
|Week&nbsp;17/18 
+
|Weeks 14/15 
  
 +
||
 +
6.4
 
||
 
||
  
<div style="text-align: center;">7.1</div>
+
[[Green's Theorem]]
  
||
+
[[Stokes' Theorem]]
 
 
[[Parametric Equations]]
 
  
 
||
 
||
  
* [[Trigonometric Functions]] <!-- 1093-2.2 -->
+
* [[Vector Fields]]
* [[Exponential Functions]] <!-- 1073-8 -->
+
* [[Line Integrals]]  
* [[Toolkit Functions|Sketching Common Functions]] <!-- 1073-Mod 1.2 -->
+
* [[Partial Derivatives]] 
 +
* [[The Dot Product]]
 +
* [[Line Integrals|Path Independence]]
 +
* [[Conservative Vector Fields]]  
  
 
||
 
||
  
* Sketch the graph of a parametric curve
+
* Circulation form of Green's Theorem.
 +
* Flux Form of Green’s Theorem.
 +
* Applying Green's Theorem to find Work, Flux.
  
||
+
|}

Latest revision as of 10:10, 21 June 2023

The textbook for this course is Calculus (Volume 3) by Gilbert Strang, Edwin Herman, et al.

Topics List

Date Sections Topics Prerequisite Skills Student Learning Outcomes
Week 1

1.1

Polar Coordinates

  • Plot points using polar coordinates and find several polar coordinates of a single point
  • Convert polar coordinates to rectangular coordinates and vice versa
  • Transform equations from polar form to rectangular form and vice versa
Week 1

1.2

Three-Dimensional Coordinate Systems


  • Three-dimensional coordinate systems.
  • Distance Formula in Space.
  • Standard Equation for a Sphere.
Weeks 1/2

2.1


Vectors in The Plane, Space

  • Vector Algebra Operations
  • The Magnitude of a vector
  • Unit Vectors
  • The Midpoint of a Line Segment
  • The Vector projection
Week 2

2.3

The Dot Product


  • Definition of Dot Product
  • Properties of Dot Product
  • Angle between vectors
  • Orthogonal vectors
Week 2

2.4

The Cross Product

  • Definition of Cross Product
  • Properties of the cross product
  • Area of a parallelogram
  • Cross product as a determinant


Week 3

2.5


Equations of Lines, Planes and Surfaces in Space

  • Write the vector, parametric equation of a line through a given point in a given direction, and a line through two given points.
  • Find the distance from a point to a given line.
  • Write the equation of a plane through a given point with a given normal, and a plane through three given points.
  • Find the distance from a point to a given plane.


Week 3

2.6


Cylinders and Quadratic Surfaces

  • Find equations for cylinders that are generated by rotating lines that are parallel to a plane
  • Understand basic quadratic surfaces
  • Understand general quadratic surfaces


Weeks 3/4

3.1, 3.2

Curves in Space and Vector-Valued Functions

  • Vector functions
  • Limits of vector functions
  • Continuity of vector functions
  • Differentiation rules for vector functions
  • Curves and paths in space


Week 4

3.3

Arc Length

  • The arc Length of a vector function
  • Arc length parameterization
Weeks 4/5

3.4

Motion in Space

  • The Unit tangent vector
  • The curvature
  • The Principal Unit Normal Vector
  • The Binormal Vector
  • The tangential and normal components of acceleration
  • The Torsion
Week 5/6

4.1


Functions of Several Variables

  • Functions of two variables
  • Functions of three variables
  • Domain and range of multivariable functions
  • Bounded regions
  • Graphs and level curves of two variable functions
  • Level surfaces of three variable functions
Week 6

4.2


Limit and Continuity of Function of Several Variables

  • Limits of functions of two variables
  • Limits of functions of more than two variables
  • Properties of limits of functions of several variables
  • Two path test of non-existing of a limit
  • Continuity for functions of several variables
  • Continuity of composition
  • Extreme values on closed and bounded domains
Week 6

4.3

Partial Derivatives


  • Partial derivatives for functions of two variables
  • Partial derivatives for functions of more than two variables
  • Partial derivatives and continuity
  • Second order partial derivatives
  • Mixed derivative theorem
Week 7

4.4

Directional Derivatives and Gradient Vectors

  • Directional derivatives for functions of two variables
  • Gradients
  • Properties of directional derivatives
  • Tangents to level curves
  • Directional derivatives for functions of three variables
Week 7

4.5

Tangent Plane, Differentiability


  • Determine the equation of a plane tangent to a given surface at a point
  • Determine the parametric equation of a normal line to a given surface at a point
  • The linear approximation of a function of two variables at a point
  • The definition of differentiability for a function of two variables
  • Differentiability implies Continuity
  • Continuity of First Partial Derivatives implies Differentiability
  • The definition of total differentiability for a function of two variables
  • Use the total differential to approximate the change in a function of two variables
Week 7

4.6

The Chain Rule for Functions of more than One Variable

  • Chain rule for functions of one independent variable and several intermediate variables.
  • Chain rule for functions of two independent variable and several intermediate variables.
  • Method for implicit differentiation.
  • The general chain rule for functions of several independent variables
Week 8

4.7

Maxima and Minima Problems

  • The derivative test for local extreme values
  • Extreme values on closed and bounded domains
  • Critical points and saddle points for functions of two variables
  • Second derivative test for local extreme values
  • Absolute maxima and minima on closed and bounded regions
Week 8/9

4.8

Lagrange Multipliers

  • Lagrange Multipliers with One Constraint
  • Lagrange Multipliers with Two Constraints
Week 9/10

5.1

Double Integrals over Rectangular Regions

  • Double Integral is the limit of Double Sums.
  • Double Integrals over Rectangular Regions.
  • Interated Integrals.
  • Fubini's Theorem (part 1).
Week 10

5.2

Double Integrals over General Regions

  • Double integrals over bounded, general regions.
  • Properties of double Integrals.
  • Fubini's theorem (part 2)
  • Changing the order of Integration.
  • Calculating Volumes, Areas and Average Values
Week 11

5.3

Double Integrals in Polar Coordinates

  • Double Integrals over rectangular polar regions.
  • Double Integrals over general polar regions.
  • Changing Cartesian Integrals into Polar Integrals.
  • Using Double Integrals in Polar Coordinates to find Volumes, Areas.
Week 11

5.4

Triple Integrals in Rectangular Coordinates

  • Triple Integrals over general bounded regions.
  • Finding Volumes by evaluating Triple Integrals.
  • Average value of a function in space.
  • Changing Integration Order and Coordinate systems.
Week 12

5.5

Triple Integrals in Cylindrical and Spherical Coordinates

  • Integrations in Cylindrical Coordinates.
  • Equations relating rectangular and cylindrical coordinates.
  • Changing Cartesian integrations into Cylindrical integrations.
  • Integrations in Spherical coordinates.
  • Equations relating spherical coordinates to Cartesian and cylindrical coordinates.
  • Changing Cartesian integrations into Cylindrical integrations.
Week 13

5.6

Applications of Multiple Integrals

  • Finding Masses, Moments, Centers of Masses, Moments of Inertia in Two Dimensions.
  • Finding Masses, Moments, Centers of Masses, Moments of Inertia in Three Dimensions.
Week 13/14

5.7

Change of Variables in Multiple Integrals

  • Determine the image of a region under a given transformation of variables.
  • Compute the Jacobian of a given transformation.
  • Evaluate a double integral using a change of variables.
  • Evaluate a triple integral using a change of variables.
Week 14

6.1

Vector Fields

  • Vector Fields in a plane.
  • Vector Fields in Space.
  • Potential Functions.
  • Gradient Fields, Conservative Vector Fields.
  • The Cross-Partial Test for Conservative Vector Fields.
  • Determining Whether a Vector Field is conservative.
Week 14

6.2

Line Integrals

  • Line Integrals of functions a long a smooth curves in a planer or in space
  • Line Integrals of of vector fields along an oriented curves in a plane or space..
  • Properties of Vector Line Integrals.
  • Evaluating Line Integrals.
  • Applications of line integrals: Calculating Arc Length, the Mass of a wire, Work done by a force, Flux across a curve, Circulation of a force.
Week 14/15

6.3

Conservative Vector Fields

  • Describe simple and closed curves
  • Define connected and simply connected regions.
  • Explain how to test a vector field to determine whether it is conservative.
  • Find a potential function for a conservative vector field.
  • Use the Fundamental Theorem for Line Integrals to evaluate a line integral of a vector field.
Weeks 14/15

6.4

Green's Theorem

Stokes' Theorem

  • Circulation form of Green's Theorem.
  • Flux Form of Green’s Theorem.
  • Applying Green's Theorem to find Work, Flux.