Difference between revisions of "MAT2233"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
(→‎Topics List: Added sections for each topic and links at the top of the page)
(→‎Topics List: Update table to include a weekly schedule)
Line 10: Line 10:
 
|-   
 
|-   
  
|Week 1/2
+
|Week 1
  
 
||
 
||
  
<div style="text-align: center;">1.1, 1.2, and 1.3</div>
+
<div style="text-align: center;">1.1, 1.2</div>
  
 
||
 
||
Line 23: Line 23:
  
 
* Adding and subtracting equations
 
* Adding and subtracting equations
* Solving an equation for a specifed variable
+
* Solving an equation for a specified variable
* Equation for a line
+
 
 +
||
 +
 
 +
* Vectors and Matrices
 +
* Gauss-Jordan elimination
 +
 
 +
|-
 +
 
 +
 
 +
|Week&nbsp;2
  
 
||
 
||
  
 +
<div style="text-align: center;">1.3</div>
 +
 +
||
 +
       
 +
[[Solutions of Linear Systems]]
 +
 +
||
  
* Vectors and Matrices
 
 
* Gauss-Jordan elimination
 
* Gauss-Jordan elimination
 +
* Equation for a line
 +
 +
||
 +
 
* Rank of a matrix
 
* Rank of a matrix
 
* Matrix addition
 
* Matrix addition
Line 41: Line 60:
  
  
|Week&nbsp;3/4    
+
|Week&nbsp;3   
  
 
||
 
||
Line 54: Line 73:
 
||
 
||
  
* Basics of functions
+
* Domain and Range
 +
* Matrix addition
 +
* Rotations and scaling in geometry
 +
 
 +
||
 +
 
 +
* Linear transformations and their properties
 +
* Geometry of Linear Transformations (rotations, scalings and projections)
 +
 
 +
|-
 +
 
 +
 
 +
|Week&nbsp;4 
 +
 
 +
||
 +
 
 +
<div style="text-align: center;">2.1, 2.2, 2.3, and 2.4</div>
 +
 
 +
||
 +
 
 +
 
 +
[[Matrix Products]]
 +
 
 +
||
 +
 
 +
* Linear Combinations
 
* Inverse functions and the identity function
 
* Inverse functions and the identity function
 
* Vectors and the Inner product
 
* Vectors and the Inner product
Line 60: Line 104:
 
||
 
||
  
* Linear transformations and their properties
+
* Matrix Products (both inner product and row-by-column methods)
* Geometry of Linear Transformations (rotations, scalings and projections)
 
* Matrix Products
 
 
* The Inverses of a linear transform
 
* The Inverses of a linear transform
  
Line 69: Line 111:
  
  
|Week&nbsp;5/6
+
 
 +
|Week&nbsp;5
  
 
||
 
||
Line 77: Line 120:
 
||
 
||
 
    
 
    
[[Bases and Linear Independence]]  
+
[[Subspaces in Different Dimensions]]  
  
 
||
 
||
  
* Linear Combinations
 
* Dimension in R<sup>n</sup>
 
 
* Image and kernel of a function
 
* Image and kernel of a function
 +
* Linear transformations
  
 
||
 
||
Line 90: Line 132:
 
* Span of a vector set
 
* Span of a vector set
 
* Subspace of R<sup>n</sup>
 
* Subspace of R<sup>n</sup>
 +
 +
 +
|-
 +
 +
 +
|Week&nbsp;6
 +
 +
||
 +
 +
<div style="text-align: center;">3.1, 3.2, and 3.3</div>
 +
 +
||
 +
 
 +
[[Bases and Linear Independence]]
 +
 +
||
 +
 +
* Linear Combinations
 +
* Dimension in R<sup>n</sup>
 +
* Rank of a matrix
 +
* Subspace of R<sup>n</sup>
 +
 +
||
 +
 
* Linear independence and basis
 
* Linear independence and basis
 
* Dimension
 
* Dimension
 
* Rank-nullity Theorem
 
* Rank-nullity Theorem
 +
  
 
|-
 
|-
 +
  
  
Line 125: Line 193:
  
  
|Week&nbsp;9/10
+
 
 +
 
 +
|Week&nbsp;9  
  
 
||
 
||
Line 145: Line 215:
 
||
 
||
  
* Perpendicular vectors
 
* Magnitude of vectors
 
 
* Transpose of a Matrix
 
* Transpose of a Matrix
 +
* Cauchy-Schwarz Inequality
 
* Orthonormal vectors
 
* Orthonormal vectors
 +
* Orthogonal complement
 
* Orthogonal Projection  
 
* Orthogonal Projection  
 
* Orthonormal Bases
 
* Orthonormal Bases
 +
 +
 +
||
 +
 +
 +
|-
 +
 +
 +
|Week&nbsp;10
 +
 +
||
 +
 +
<div style="text-align: center;"> 5.1, 5.2, 5.3, and 5.4 </div>
 +
 +
||
 +
 +
 
 +
[[Gram-Schmidt Process]]
 +
 +
||
 +
 +
* Unit vectors
 +
* Inner products
 +
* Orthonormal bases
 +
* Subspaces of R<big>n</big>
 +
 +
||
 +
 
* Gram-Schmidt process
 
* Gram-Schmidt process
 
* The Least Squares solution
 
* The Least Squares solution
Line 160: Line 258:
  
  
 
+
|Week&nbsp;11  
|Week&nbsp;11/12
 
  
 
||
 
||
Line 180: Line 277:
  
 
* Properties of Determinants
 
* Properties of Determinants
 +
* Sarrus's Rule
 
* Row operations and determinants
 
* Row operations and determinants
 
* Invertibility based on determinant
 
* Invertibility based on determinant
 +
 +
 +
||
 +
 +
 +
|-
 +
 +
 +
|Week&nbsp;12
 +
 +
||
 +
 +
<div style="text-align: center;">6.1, 6.2, and 6.3 </div>
 +
 +
||
 +
 +
 
 +
[[Cramer's Rule]]
 +
 +
||
 +
 +
* Properties of Determinants
 +
* linear Systems
 +
* Invertible matrices
 +
 +
||
 +
 +
* Parrallelepipeds in R<big>n</big>
 
* Geometric Interpretation of the Determinant
 
* Geometric Interpretation of the Determinant
 
* Cramer's rule
 
* Cramer's rule
Line 191: Line 317:
  
  
|Week&nbsp;13/14
+
|Week&nbsp;13  
  
 
||
 
||
Line 213: Line 339:
 
* Finding eigenvectors
 
* Finding eigenvectors
 
* Geometric and algebraic multiplicity
 
* Geometric and algebraic multiplicity
 +
 +
||
 +
 +
 +
|-
 +
 +
|Week&nbsp;14
 +
 +
||
 +
 +
<div style="text-align: center;">7.1, 7.2, 7.3, and 8.1 </div>
 +
 +
||
 +
 +
 
 +
[[Spectral Theorem]]
 +
 +
||
 +
 +
* Transpose of a matrix
 +
* Basis
 +
* Orthogonal matrices
 +
* Diagonal matrices
 +
 +
||
 +
 +
* Symmetric matrices
 
* Spectral Theorem
 
* Spectral Theorem
  
 
||
 
||

Revision as of 07:31, 16 June 2020

A comprehensive list of all undergraduate math courses at UTSA can be found here.

The Wikipedia summary of Linear Algebra and its history.

Topics List

Date Sections Topics Prerequisite Skills Student Learning Outcomes
Week 1
1.1, 1.2

Systems of Linear Equations

  • Adding and subtracting equations
  • Solving an equation for a specified variable
  • Vectors and Matrices
  • Gauss-Jordan elimination
Week 2
1.3

Solutions of Linear Systems

  • Gauss-Jordan elimination
  • Equation for a line
  • Rank of a matrix
  • Matrix addition
  • The product Ax
  • Inner product
  • Linear Combinations


Week 3
2.1, 2.2, 2.3, and 2.4


Linear Transformations

  • Domain and Range
  • Matrix addition
  • Rotations and scaling in geometry
  • Linear transformations and their properties
  • Geometry of Linear Transformations (rotations, scalings and projections)
Week 4
2.1, 2.2, 2.3, and 2.4


Matrix Products

  • Linear Combinations
  • Inverse functions and the identity function
  • Vectors and the Inner product
  • Matrix Products (both inner product and row-by-column methods)
  • The Inverses of a linear transform


Week 5
3.1, 3.2, and 3.3

Subspaces in Different Dimensions

  • Image and kernel of a function
  • Linear transformations
  • Image and Kernel of a linear transformation
  • Span of a vector set
  • Subspace of Rn


Week 6
3.1, 3.2, and 3.3

Bases and Linear Independence

  • Linear Combinations
  • Dimension in Rn
  • Rank of a matrix
  • Subspace of Rn
  • Linear independence and basis
  • Dimension
  • Rank-nullity Theorem


Week 7/8
3.4


Similar Matrices and Coordinates

  • Conics (ellipses in particular)
  • Equivalence Relations
  • Coordinates in a subspace of Rn
  • Similar matrices
  • Diagonal matrices


Week 9
5.1, 5.2, 5.3, and 5.4


Orthogonality

  • Parallel and perpendicular lines
  • Absolute value function
  • Basic trigonometric function
  • Properties of inner products
  • Transpose of a Matrix
  • Cauchy-Schwarz Inequality
  • Orthonormal vectors
  • Orthogonal complement
  • Orthogonal Projection
  • Orthonormal Bases



Week 10
5.1, 5.2, 5.3, and 5.4


Gram-Schmidt Process

  • Unit vectors
  • Inner products
  • Orthonormal bases
  • Subspaces of Rn
  • Gram-Schmidt process
  • The Least Squares solution


Week 11
6.1, 6.2, and 6.3


Determinants

  • Summation notation
  • Sgn function
  • Properties of Determinants
  • Sarrus's Rule
  • Row operations and determinants
  • Invertibility based on determinant



Week 12
6.1, 6.2, and 6.3


Cramer's Rule

  • Properties of Determinants
  • linear Systems
  • Invertible matrices
  • Parrallelepipeds in Rn
  • Geometric Interpretation of the Determinant
  • Cramer's rule


Week 13
7.1, 7.2, 7.3, and 8.1


Eigenvalues and Eigenvectors

  • Finding real roots of a polynomial
  • Finding the kernel of a function
  • Diagonalization
  • Finding eigenvalues
  • Finding eigenvectors
  • Geometric and algebraic multiplicity


Week 14
7.1, 7.2, 7.3, and 8.1


Spectral Theorem

  • Transpose of a matrix
  • Basis
  • Orthogonal matrices
  • Diagonal matrices
  • Symmetric matrices
  • Spectral Theorem