Difference between revisions of "Half-angle formulas"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
 
Line 6: Line 6:
  
 
* <math> \tan{\left(\frac{x}{2}\right)} = \pm \sqrt{\frac{1 - \cos{x}}{1 + \cos{x}}} </math>
 
* <math> \tan{\left(\frac{x}{2}\right)} = \pm \sqrt{\frac{1 - \cos{x}}{1 + \cos{x}}} </math>
::::: <math>  = \frac{\sin{x}}{1 + \cos{x}} </math>
+
 
::::: <math> = \frac{1 - \cos{x}}{\sin{x}} </math>
+
:::: <math>  = \frac{\sin{x}}{1 + \cos{x}} </math>
 +
 
 +
:::: <math> = \frac{1 - \cos{x}}{\sin{x}} </math>
  
 
==Resources==
 
==Resources==
 
* [https://mathresearch.utsa.edu/wikiFiles/MAT1093/Half-angle%20formulas/Esparza%201093%20Notes%203.6B.pdf Half-angle formulas]. Written notes created by Professor Esparza, UTSA.
 
* [https://mathresearch.utsa.edu/wikiFiles/MAT1093/Half-angle%20formulas/Esparza%201093%20Notes%203.6B.pdf Half-angle formulas]. Written notes created by Professor Esparza, UTSA.

Latest revision as of 14:57, 23 September 2021

Half angle identities:

Resources