Difference between revisions of "Trigonometric Equations"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
 
(10 intermediate revisions by one other user not shown)
Line 1: Line 1:
==The complex plane==
 
A complex number <math>z</math> can be viewed as a point or a position vector in a two-dimensional Cartesian coordinate system called the '''complex plane''' or '''Argand diagram'''. The point and hence the complex number <math>z</math> can be specified by Cartesian (rectangular) coordinates. The Cartesian coordinates of the complex number are the real part <math>x=\text{Re}(z)</math> and the imaginary part <math>y=\text{Im}(z)</math> . The representation of a complex number by its Cartesian coordinates is called the ''Cartesian form'' or ''rectangular form'' or ''algebraic form'' of that complex number.
 
  
===Polar form===
+
The functions sine, cosine and tangent of an angle are sometimes referred to as the primary or basic trigonometric functions. Their usual abbreviations are <math>\sin (\theta), \cos (\theta),</math> and <math>\tan (\theta),</math> respectively, where <math>\theta</math> denotes the angle. The parentheses around the argument of the functions are often omitted, e.g., <math>\sin \theta</math> and <math>\cos \theta,</math> if an interpretation is unambiguously possible.
Alternatively, the complex number <math>z</math> can be specified by polar coordinates. The polar coordinates are <math>r=|z|\ge0</math> , called the '''absolute value''' or '''modulus''', and <math>\phi=\arg(z)</math> , called the '''argument''' of <math>z</math> . For <math>r=0</math> any value of <math>\varphi</math> describes the same number. To get a unique representation, a conventional choice is to set <math>\arg(0)=0</math> . For <math>r>0</math> the argument <math>\varphi</math> is unique modulo <math>2\pi</math> ; that is, if any two values of the complex argument differ by an exact integer multiple of <math>2\pi</math> , they are considered equivalent. To get a unique representation, a conventional choice is to limit <math>\varphi</math> to the interval <math>(-\pi,\pi]</math> i.e. <math>-\pi<\varphi\le\pi</math> . The representation of a complex number by its polar coordinates is called the ''polar form'' of the complex number.
 
  
===Conversion from the polar form to the Cartesian form===
+
The sine of an angle is defined, in the context of a right triangle, as the ratio of the length of the side that is opposite to the angle divided by the length of the longest side of the triangle (the hypotenuse).
:<math>x=r\cos(\varphi)</math>
+
:<math>\sin\theta = \frac{\text{opposite}}{\text{hypotenuse}}.</math>
:<math>y=r\sin(\varphi)</math>
+
The cosine of an angle in this context is the ratio of the length of the side that is adjacent to the angle divided by the length of the hypotenuse.
 +
:<math>\cos\theta = \frac{\text{adjacent}}{\text{hypotenuse}}.</math>
 +
The tangent of an angle in this context is the ratio of the length of the side that is opposite to the angle divided by the length of the side that is adjacent to the angle. This is the same as the ratio of the sine to the cosine of this angle, as can be seen by substituting the definitions of <math>\sin</math> and <math>\cos</math> from above:
 +
:<math>\tan\theta = \frac{\sin\theta}{\cos\theta}=\frac{\text{opposite}}{\text{adjacent}}.</math>
  
===Conversion from the Cartesian form to the polar form===
+
The remaining trigonometric functions secant (<math>\sec</math>), cosecant (<math>\csc</math>), and cotangent (<math>\cot</math>) are defined as the reciprocal functions of cosine, sine, and tangent, respectively. Rarely, these are called the secondary trigonometric functions:
:<math>r=\sqrt{x^2+y^2}</math>
 
  
:<math>\varphi=
+
:<math>\sec\theta = \frac{1}{\cos\theta},\quad\csc\theta = \frac{1}{\sin\theta},\quad\cot\theta=\frac{1}{\tan\theta}=\frac{\cos\theta}{\sin\theta}.</math>
\begin{cases}
+
These definitions are sometimes referred to as ratio identities.
\arctan\left(\frac{y}{x}\right)&\text{if }x>0\\
 
\arctan\left(\frac{y}{x}\right)+\pi&\text{if }x<0,y\ge0\\
 
\arctan\left(\frac{y}{x}\right)-\pi&\text{if }x<0,y<0\\
 
\frac{\pi}{2}&\text{if }x=0,y>0\\
 
-\frac{\pi}{2}&\text{if }x=0,y<0\\
 
\text{undefined}&\text{if }x=0,y=0
 
\end{cases}</math>
 
  
The previous formula requires rather laborious case differentiations. However, many programming languages provide a variant of the arctangent function. A formula that uses the arccos function requires fewer case differentiations:
+
== Inverse trigonometric functions ==
:<math>\varphi=
 
\begin{cases}
 
\arccos\left(\frac{x}{r}\right)&\text{if }y\ge0,r\ne0\\
 
-\arccos\left(\frac{x}{r}\right)&\text{if }y<0\\
 
\text{undefined}&\text{if }r=0
 
\end{cases}</math>
 
  
===Notation of the polar form===
+
The inverse trigonometric functions are partial inverse functions for the trigonometric functions. For example, the inverse function for the sine, known as the '''inverse sine''' (<math>\sin^{-1}</math>) or '''arcsine''' ({{math|arcsin}} or {{math|asin}}), satisfies
The notation of the polar form as
+
<math display=block>\sin(\arcsin x) = x\quad\text{for} \quad |x| \leq 1</math>
:<math>z=r\big(\cos(\varphi)+i\sin(\varphi)\big)</math>
+
and
is called ''trigonometric form''. The notation <math>\text{cis}(\varphi)</math> is sometimes used as an abbreviation for <math>\cos(\varphi)+i\sin(\varphi)</math> . Using [[w:Euler's formula|Euler's formula]] it can also be written as
+
<math display=block>\arcsin(\sin x) = x\quad\text{for} \quad |x| \leq \frac{\pi}{2}.</math>
:<math>z=re^{i\varphi}</math>
 
which is called ''exponential form''.
 
  
===Multiplication, division, exponentiation, and root extraction in the polar form===
+
This article will denote the inverse of a trigonometric function by prefixing its name with "<math>\operatorname{arc}</math>". The notation is shown in the table below.  
Multiplication, division, exponentiation, and root extraction are much easier in the polar form than in the Cartesian form.  
 
  
Using [[w:List of trigonometric identities#Angle sum and difference identities|sum and difference identities]] its possible to obtain that
+
=== Compositions of trig and inverse trig functions ===
  
:<math>r_1e^{i\varphi_1}\cdot r_2e^{i\varphi_2}=r_1r_2e^{i(\varphi_1+\varphi_2)}</math>
+
<math display=block>
 +
\begin{align}
 +
  \sin(\arcsin x) &=x
 +
& \cos(\arcsin x) &=\sqrt{1-x^2}
 +
& \tan(\arcsin x) &=\frac{x}{\sqrt{1 - x^2}}
 +
\\
 +
  \sin(\arccos x) &=\sqrt{1-x^2}
 +
& \cos(\arccos x) &=x
 +
& \tan(\arccos x) &=\frac{\sqrt{1 - x^2}}{x}
 +
\\
 +
  \sin(\arctan x) &=\frac{x}{\sqrt{1+x^2}}
 +
& \cos(\arctan x) &=\frac{1}{\sqrt{1+x^2}}
 +
& \tan(\arctan x) &=x
 +
\\
 +
  \sin(\arccsc x) &=\frac{1}{x}
 +
& \cos(\arccsc x) &=\frac{\sqrt{x^2 - 1}}{x}
 +
& \tan(\arccsc x) &=\frac{1}{\sqrt{x^2 - 1}}
 +
\\
 +
  \sin(\arcsec x) &=\frac{\sqrt{x^2 - 1}}{x}
 +
& \cos(\arcsec x) &=\frac{1}{x}
 +
& \tan(\arcsec x) &=\sqrt{x^2 - 1}
 +
\\
 +
  \sin(\arccot x) &=\frac{1}{\sqrt{1+x^2}}
 +
& \cos(\arccot x) &=\frac{x}{\sqrt{1+x^2}}
 +
& \tan(\arccot x) &=\frac{1}{x}
 +
\\
 +
\end{align}
 +
</math>
  
and that
+
Taking the multiplicative inverse of both sides of the each equation above results in the equations for <math>\csc = \frac{1}{\sin}, \;\sec = \frac{1}{\cos}, \text{ and } \cot = \frac{1}{\tan}.</math>
 +
The right hand side of the formula above will always be flipped.
 +
For example, the equation for <math>\cot(\arcsin x)</math> is:
 +
<math display=block>\cot(\arcsin x) = \frac{1}{\tan(\arcsin x)} = \frac{1}{\frac{x}{\sqrt{1 - x^2}}} = \frac{\sqrt{1 - x^2}}{x}</math>
 +
while the equations for <math>\csc(\arccos x)</math> and <math>\sec(\arccos x)</math> are:
 +
<math display=block>\csc(\arccos x) = \frac{1}{\sin(\arccos x)} = \frac{1}{\sqrt{1-x^2}} \qquad \text{ and }\quad \sec(\arccos x) = \frac{1}{\cos(\arccos x)} = \frac{1}{x}.</math>
  
:<math>\frac{r_1e^{i\varphi_1}}{r_2e^{i\varphi_2}}=\frac{r_1}{r_2}\cdot e^{i(\varphi_1-\varphi_2)}</math>
+
=== Solutions to elementary trigonometric equations ===
  
Exponentiation with integer exponents; according to [[w:De Moivre's formula|de Moivre's formula]],
+
The following table shows how inverse trigonometric functions may be used to solve equalities involving the six standard trigonometric functions.
 +
It is assumed that the given values <math>\theta, r, s, x,</math> and <math>y</math> all lie within appropriate ranges so that the relevant expressions below are well-defined.
 +
In the table below, "for some <math>k \in \Z</math>" is just another way of saying "for some integer <math>k.</math>"
  
:<math>\big(re^{i\varphi}\big)^n=r^ne^{ni\varphi}</math>
+
{| class="wikitable" style="border: none;"
 +
|+
 +
|-
 +
! Equation !! if and only if !! colspan="6"|Solution !! where...
 +
|-
 +
| style="text-align: center; padding: 0.5% 2em 0.5% 2em;"|<math>\sin \theta = y</math>
 +
| style="text-align: center;"|{{math|[[Logical equality|<math>\iff</math>]]}}
 +
| style='border-style: solid none solid none; text-align: left; padding-left: 2em;' |<math>\theta =\,</math>
 +
| style='border-style: solid none solid none; text-align: right;' |<math>(-1)^k</math>
 +
| style='border-style: solid none solid none; text-align: left;' |<math>\arcsin (y)</math>
 +
| style='border-style: solid none solid none;' |<math>+</math>
 +
| style='border-style: solid none solid none;' |
 +
| style='border-style: solid none solid none; padding-right: 2em;' |<math>\pi k</math>
 +
| style="text-align: center; padding-left: 1em; padding-right: 1em;"|for some <math>k \in \Z</math>
 +
<!-- END:  sin ''θ'' = ''x'' -->
 +
|-
 +
<!-- START: csc ''θ'' = ''r'' -->
 +
| style="text-align: center; padding: 0.5% 2em 0.5% 2em;"|<math>\csc \theta = r</math>
 +
| style="text-align: center;"|<math>\iff</math>
 +
| style='border-style: solid none solid none; text-align: left; padding-left: 2em;' |<math>\theta =\,</math>
 +
| style='border-style: solid none solid none; text-align: right;' |<math>(-1)^k</math>
 +
| style='border-style: solid none solid none; text-align: left;' |<math>\arccsc (r)</math>
 +
| style='border-style: solid none solid none;' |<math>+</math>
 +
| style='border-style: solid none solid none;' |
 +
| style='border-style: solid none solid none; padding-right: 2em;' |<math>\pi k</math>
 +
| style="text-align: center; padding-left: 1em; padding-right: 1em;"|for some <math>k \in \Z</math>
 +
<!-- END:  csc ''θ'' = ''r'' -->
 +
|-
 +
<!-- START: cos ''θ'' = ''x'' -->
 +
| style="text-align: center; padding: 0.5% 2em 0.5% 2em;"|<math>\cos \theta = x</math>
 +
| style="text-align: center;"|<math>\iff</math>
 +
| style='border-style: solid none solid none; text-align: left; padding-left: 2em;' |<math>\theta =\,</math>
 +
| style='border-style: solid none solid none; text-align: right;' |<math>\pm\,</math>
 +
| style='border-style: solid none solid none; text-align: left;' |<math>\arccos (x)</math>
 +
| style='border-style: solid none solid none;' |<math>+</math>
 +
| style='border-style: solid none solid none;' |<math>2</math>
 +
| style='border-style: solid none solid none; padding-right: 2em;' |<math>\pi k</math>
 +
| style="text-align: center; padding-left: 1em; padding-right: 1em;"|for some <math>k \in \Z</math>
 +
<!-- END:  cos ''θ'' = ''x'' -->
 +
|-
 +
<!-- START: sec ''θ'' = ''r'' -->
 +
| style="text-align: center; padding: 0.5% 2em 0.5% 2em;"|<math>\sec \theta = r</math>
 +
| style="text-align: center;"|<math>\iff</math>
 +
| style='border-style: solid none solid none; text-align: left; padding-left: 2em;' |<math>\theta =\,</math>
 +
| style='border-style: solid none solid none; text-align: right;' |<math>\pm\,</math>
 +
| style='border-style: solid none solid none; text-align: left;' |<math>\arcsec (r)</math>
 +
| style='border-style: solid none solid none;' |<math>+</math>
 +
| style='border-style: solid none solid none;' |<math>2</math>
 +
| style='border-style: solid none solid none; padding-right: 2em;' |<math>\pi k</math>
 +
| style="text-align: center; padding-left: 1em; padding-right: 1em;"|for some <math>k \in \Z</math>
 +
<!-- END:  sec ''θ'' = ''r'' -->
 +
|-
 +
<!-- START: tan ''θ'' = ''s'' -->
 +
| style="text-align: center; padding: 0.5% 2em 0.5% 2em;"|<math>\tan \theta = s</math>
 +
| style="text-align: center;"|<math>\iff</math>
 +
| style='border-style: solid none solid none; text-align: left; padding-left: 2em;' |<math>\theta =\,</math>
 +
| style='border-style: solid none solid none; text-align: right;' |
 +
| style='border-style: solid none solid none; text-align: left;' |<math>\arctan (s)</math>
 +
| style='border-style: solid none solid none;' |<math>+</math>
 +
| style='border-style: solid none solid none;' |
 +
| style='border-style: solid none solid none; padding-right: 2em;' |<math>\pi k</math>
 +
| style="text-align: center; padding-left: 1em; padding-right: 1em;"|for some <math>k \in \Z</math>
 +
<!-- END:  tan ''θ'' = ''s'' -->
 +
|-
 +
<!-- START: cot ''θ'' = ''s'' -->
 +
| style="text-align: center; padding: 0.5% 2em 0.5% 2em;"|<math>\cot \theta = r</math>
 +
| style="text-align: center;"|<math>\iff</math>
 +
| style='border-style: solid none solid none; text-align: left; padding-left: 2em;' |<math>\theta =\,</math>
 +
| style='border-style: solid none solid none; text-align: right;' |
 +
| style='border-style: solid none solid none; text-align: left;' |<math>\arccot (r)</math>
 +
| style='border-style: solid none solid none;' |<math>+</math>
 +
| style='border-style: solid none solid none;' |
 +
| style='border-style: solid none solid none; padding-right: 2em;' |<math>\pi k</math>
 +
| style="text-align: center; padding-left: 1em; padding-right: 1em;"|for some <math>k \in \Z</math>
 +
<!-- END:  cot ''θ'' = ''s'' -->
 +
|}
  
Exponentiation with arbitrary complex exponents is discussed in the article on [[exponentiation]].
+
For example, if <math>\cos \theta = -1</math> then <math>\theta = \pi + 2 \pi k = -\pi + 2 \pi (1 + k)</math> for some <math>k \in \Z.</math> While if <math>\sin \theta = \pm 1</math> then <math>\theta = \frac{\pi}{2} + \pi k = - \frac{\pi}{2} + \pi (k + 1)</math> for some <math>k \in \Z,</math> where <math>k</math> is even if <math>\sin \theta = 1</math>; odd if <math>\sin \theta = -1.</math> The equations <math>\sec \theta = -1</math> and <math>\csc \theta = \pm 1</math> have the same solutions as <math>\cos \theta = -1</math> and <math>\sin \theta = \pm 1,</math> respectively. In all equations above except for those just solved (i.e. except for <math>\sin</math>/<math>\csc \theta = \pm 1</math> and <math>\cos</math>/<math>\sec \theta = - 1</math>), for fixed <math>r, s, x,</math> and <math>y,</math> the integer <math>k</math> in the solution's formula is uniquely determined by <math>\theta.</math>
  
The addition of two complex numbers is just the addition of two vectors, and multiplication by a fixed complex number can be seen as a simultaneous rotation and stretching.
+
=== Other identities ===
  
Multiplication by <math>i</math> corresponds to a counter-clockwise rotation by 90° or <math>\frac{\pi}{2}</math> radians. The geometric content of the equation <math>i^2=-1</math> is that a sequence of two 90° rotations results in a 180° (<math>\pi</math> radians) rotation. Even the fact <math>(-1)\cdot(-1)=1</math> from arithmetic can be understood geometrically as the combination of two 180° turns.
+
These inverse trigonometric functions are related to one another by the formulas:
 
+
<math display=block>\begin{alignat}{9}
All the roots of any number, real or complex, may be found with a simple algorithm. The <math>n</math>-th roots are given by
+
\frac{\pi}{2} ~&=~ \arcsin(x) &&+ \arccos(x) ~&&=~ \arctan(r) &&+ \arccot(r) ~&&=~ \arcsec(s) &&+ \arccsc(s) \\[0.4ex]
 
+
\pi ~&=~ \arccos(x) &&+ \arccos(-x) ~&&=~ \arccot(r) &&+ \arccot(-r) ~&&=~ \arcsec(s) &&+ \arcsec(-s) \\[0.4ex]
:<math>\sqrt[n]{re^{i\varphi}}=\sqrt[n]{r}\,e^{i\left(\frac{\varphi+2k\pi}{n}\right)}</math>
+
0 ~&=~ \arcsin(x) &&+ \arcsin(-x) ~&&=~ \arctan(r) &&+ \arctan(-r) ~&&=~ \arccsc(s) &&+ \arccsc(-s) \\[1.0ex]
 
+
\end{alignat}</math>
for <math>k=0,1,2,\ldots,n-1</math> , where <math>\sqrt[n]{r}</math> represents the principal <math>n</math>-th root of <math>r</math> .
+
which hold whenever they are well-defined (that is, whenever <math>x, r, s, -x, -r, \text{ and } -s</math> are in the domains of the relevant functions).  
 
 
==Absolute value, conjugation and distance==
 
The '''absolute value''' (or ''modulus'' or ''magnitude'') of a complex number <math>z=re^{i\varphi}</math> is defined as <math>|z|=r</math> .
 
 
 
Algebraically, if <math>z=a+bi</math> then <math>|z|=\sqrt{a^2+b^2}</math> .<!--keep sentence-terminator within math element to make it align better with the formula-->
 
 
 
One can check readily that the absolute value has three important properties:
 
 
 
:<math>|z|=0</math> if and only if <math>z=0</math>
 
:<math>|z+w|\le|z|+|w|</math> (triangle inequality)
 
:<math>|z\cdot w|=|z|\cdot|w|</math>
 
 
 
for all complex numbers <math>z,w</math> . It then follows, for example, that <math>|1|=1</math> and <math>\left|\frac{z}{w}\right|=\frac{|z|}{|w|}</math> . By defining the '''distance''' function <math>d(z,w)=|z-w|</math> we turn the set of complex numbers into a [[w:metric space|metric space]] and we can therefore talk about limits and continuity.
 
 
 
The '''complex conjugate''' of the complex number <math>z=a+bi</math> is defined to be <math>a-bi</math> , written as <math>\bar z</math> or <math>z^*</math> . As seen in the figure, <math>\bar z</math> is the "reflection" of <math>z</math> about the real axis. The following can be checked:
 
:<math>\overline{z+w}=\bar z+\bar w</math>
 
:<math>\overline{z\cdot w}=\bar z\cdot\bar w</math>
 
:<math>\overline{\left(\frac{z}{w}\right)}=\frac{\bar z}{\bar w}</math>
 
:<math>\bar{\bar z}=z</math>
 
:<math>\bar z=z</math> if and only if <math>z</math> is real
 
:<math>|z|=|\bar z|</math>
 
:<math>|z|^2=z\cdot\bar z</math>
 
:<math>z^{-1}=\bar z\cdot|z|^{-2}</math> if <math>z</math> is non-zero.
 
 
 
The latter formula is the method of choice to compute the inverse of a complex number if it is given in rectangular coordinates.
 
 
 
That conjugation commutes with all the algebraic operations (and many functions; ''e.g.'' <math>\sin(\bar z)=\overline{\sin(z)}</math>) is rooted in the ambiguity in choice of <math>i</math> (−1 has two square roots). It is important to note, however, that the function <math>f(z)=\bar z</math> is not complex-differentiable.
 
  
 +
<math display=block>
 +
\begin{align}
 +
\arcsin x + \arccos x &= \dfrac \pi 2 \\
 +
\arctan x + \arccot x &= \dfrac \pi 2 \\
 +
\end{align}</math>
 +
<math display=block>\begin{align}
 +
\arctan x + \arctan \dfrac{1}{x}
 +
&= \begin{cases}
 +
  \frac{\pi}{2},  & \text{if } x > 0 \\
 +
- \frac{\pi}{2},  & \text{if } x < 0
 +
\end{cases} \\
 +
\arccot x + \arccot \dfrac{1}{x}
 +
&= \begin{cases}
 +
  \frac{\pi}{2},  & \text{if } x > 0 \\
 +
  \frac{3\pi}{2}, & \text{if } x < 0
 +
\end{cases} \\
 +
\end{align}</math>
 +
<math display=block>\arccos \frac{1}{x} = \arcsec x \qquad \text{ and } \qquad \arcsec \frac{1}{x} = \arccos x</math>
 +
<math display=block>\arcsin \frac{1}{x} = \arccsc x \qquad \text{ and } \qquad \arccsc \frac{1}{x} = \arcsin x</math>
 +
<math display=block>\arctan \frac{1}{x} = \arctan \frac{1}{x+y} + \arctan\frac{y}{x^2+xy+1}</math>
  
 
==Resources==
 
==Resources==
* [https://en.wikibooks.org/wiki/Calculus/Complex_numbers Complex Numbers], Wikibooks: Calculus
 
 
* [https://mathresearch.utsa.edu/wikiFiles/MAT1093/Trigonometric%20Equations/Esparza%201093%20Notes%203.3B.pdf Trigonometric Equations]. Written notes created by Professor Esparza, UTSA.
 
* [https://mathresearch.utsa.edu/wikiFiles/MAT1093/Trigonometric%20Equations/Esparza%201093%20Notes%203.3B.pdf Trigonometric Equations]. Written notes created by Professor Esparza, UTSA.
 +
 +
== Licensing ==
 +
Content obtained and/or adapted from:
 +
* [https://en.wikipedia.org/wiki/List_of_trigonometric_identities List of trigonometric identities, Wikipedia] under a CC BY-SA license

Latest revision as of 16:52, 28 October 2021

The functions sine, cosine and tangent of an angle are sometimes referred to as the primary or basic trigonometric functions. Their usual abbreviations are and respectively, where denotes the angle. The parentheses around the argument of the functions are often omitted, e.g., and if an interpretation is unambiguously possible.

The sine of an angle is defined, in the context of a right triangle, as the ratio of the length of the side that is opposite to the angle divided by the length of the longest side of the triangle (the hypotenuse).

The cosine of an angle in this context is the ratio of the length of the side that is adjacent to the angle divided by the length of the hypotenuse.

The tangent of an angle in this context is the ratio of the length of the side that is opposite to the angle divided by the length of the side that is adjacent to the angle. This is the same as the ratio of the sine to the cosine of this angle, as can be seen by substituting the definitions of and from above:

The remaining trigonometric functions secant (), cosecant (), and cotangent () are defined as the reciprocal functions of cosine, sine, and tangent, respectively. Rarely, these are called the secondary trigonometric functions:

These definitions are sometimes referred to as ratio identities.

Inverse trigonometric functions

The inverse trigonometric functions are partial inverse functions for the trigonometric functions. For example, the inverse function for the sine, known as the inverse sine () or arcsine (arcsin or asin), satisfies

and

This article will denote the inverse of a trigonometric function by prefixing its name with "". The notation is shown in the table below.

Compositions of trig and inverse trig functions

Taking the multiplicative inverse of both sides of the each equation above results in the equations for The right hand side of the formula above will always be flipped. For example, the equation for is:

while the equations for and are:

Solutions to elementary trigonometric equations

The following table shows how inverse trigonometric functions may be used to solve equalities involving the six standard trigonometric functions. It is assumed that the given values and all lie within appropriate ranges so that the relevant expressions below are well-defined. In the table below, "for some " is just another way of saying "for some integer "

Equation if and only if Solution where...
for some
for some
for some
for some
for some
for some

For example, if then for some While if then for some where is even if ; odd if The equations and have the same solutions as and respectively. In all equations above except for those just solved (i.e. except for / and /), for fixed and the integer in the solution's formula is uniquely determined by

Other identities

These inverse trigonometric functions are related to one another by the formulas:

which hold whenever they are well-defined (that is, whenever are in the domains of the relevant functions).

Resources

Licensing

Content obtained and/or adapted from: