Difference between revisions of "Derivatives of Inverse Functions"
| Line 57: | Line 57: | ||
* [https://math.libretexts.org/Bookshelves/Calculus/Book%3A_Calculus_(OpenStax)/03%3A_Derivatives/3.7%3A_Derivatives_of_Inverse_Functions Derivatives of Inverse Function], Mathematics LibreTexts | * [https://math.libretexts.org/Bookshelves/Calculus/Book%3A_Calculus_(OpenStax)/03%3A_Derivatives/3.7%3A_Derivatives_of_Inverse_Functions Derivatives of Inverse Function], Mathematics LibreTexts | ||
| + | |||
| + | ==Licensing== | ||
| + | Content obtained and/or adapted from: | ||
| + | * [https://en.wikipedia.org/wiki/Inverse_functions_and_differentiation Inverse functions and differentiation, Wikipedia] under a CC BY-SA license | ||
Latest revision as of 09:31, 28 October 2021
In mathematics, the inverse of a function is a function that, in some fashion, "undoes" the effect of . The inverse of is denoted as , where if and only if .
Their two derivatives, assuming they exist, are reciprocal, as the Leibniz notation suggests; that is:
This relation is obtained by differentiating the equation in terms of and applying the chain rule, yielding that:
considering that the derivative of with respect to is 1.
Writing explicitly the dependence of on , and the point at which the differentiation takes place, the formula for the derivative of the inverse becomes (in Lagrange's notation):
- .
This formula holds in general whenever is continuous and injective on an interval , with being differentiable at () and where . The same formula is also equivalent to the expression
where denotes the unary derivative operator (on the space of functions) and denotes function composition.
Geometrically, a function and inverse function have graphs that are reflections, in the line . This reflection operation turns the gradient of any line into its reciprocal.
Assuming that has an inverse in a neighbourhood of and that its derivative at that point is non-zero, its inverse is guaranteed to be differentiable at and have a derivative given by the above formula.
Examples
- (for positive x) has inverse .
At , however, there is a problem: the graph of the square root function becomes vertical, corresponding to a horizontal tangent for the square function.
- (for real x) has inverse (for positive )
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy}{dx} = e^x \mbox{ }\mbox{ }\mbox{ }\mbox{ }; \mbox{ }\mbox{ }\mbox{ }\mbox{ } \frac{dx}{dy} = \frac{1}{y} }
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy}{dx}\,\cdot\,\frac{dx}{dy} = e^x \cdot \frac{1}{y} = \frac{e^x}{e^x} = 1 }
Resources
- Derivatives of Inverse Functions PowerPoint file created by Dr. Sara Shirinkam, UTSA.
- Derivatives of Inverse Function, Mathematics LibreTexts
Licensing
Content obtained and/or adapted from:
- Inverse functions and differentiation, Wikipedia under a CC BY-SA license