Difference between revisions of "MAT2214"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
(Altered the table to match the new list of Topics (several large changes to contents))
m (→‎Topics List: Improving Consistency of Formatting)
 
(91 intermediate revisions by 6 users not shown)
Line 1: Line 1:
 +
The textbook for this course is
 +
[https://openstax.org/details/books/calculus-volume-3 Calculus (Volume 3) by Gilbert Strang, Edwin Herman, et al.]
 +
 
==Topics List==
 
==Topics List==
 
{| class="wikitable sortable"
 
{| class="wikitable sortable"
 
! Date !! Sections !! Topics !! Prerequisite Skills !! Student Learning Outcomes
 
! Date !! Sections !! Topics !! Prerequisite Skills !! Student Learning Outcomes
 
 
|-   
 
|-   
  
  
|Week 1
+
|Week 1
  
 
||
 
||
 
+
1.1
<div style="text-align: center;">Chapter 1</div>
 
 
 
 
||
 
||
 
          
 
          
Line 17: Line 17:
  
 
||
 
||
 
+
* [[Trigonometric Functions: Unit Circle Approach]]  
* [[Trigonometric Functions: Unit Circle Approach]] <!-- 1093-2.2 -->
+
* [[Inverse Trigonometric Functions]]  
* [[The inverse Sine, Cosine and Tangent functions]] <!-- 1093-3.1 -->
 
 
 
 
||
 
||
 
 
* Plot points using polar coordinates and find several polar coordinates of a single point
 
* Plot points using polar coordinates and find several polar coordinates of a single point
 
* Convert polar coordinates to rectangular coordinates and vice versa
 
* Convert polar coordinates to rectangular coordinates and vice versa
 
* Transform equations from polar form to rectangular form and vice versa
 
* Transform equations from polar form to rectangular form and vice versa
 
 
 
|-
 
|-
  
  
  
|Week&nbsp;1
+
|Week 1
  
 
||
 
||
 
+
1.2
<div style="text-align: center;">Chapter 1</div>
 
 
 
 
||
 
||
 
          
 
          
Line 44: Line 37:
 
||
 
||
  
* [[Graphs|One-dimensional coordinate systems]] <!-- 1073-Mod R -->
+
* [[Two-dimensional coordinate systems]]  
* [[Bases and Linear Independence| Two-dimensional coordinate systems]] <!-- 2233-3.3 -->
+
* [[Solving Equations and Inequalities| Algebraic Expressions]]  
* [[Solving Equations| Algebraic Expressions]] <!-- 1073-Mod R -->
+
 
* [[Solving Inequalities]] <!-- 1073-Mod R -->
 
* '''[[Distance Formula in the Plane]]''' <!-- DNE (recommend pairing with discussion of absolute value function) -->
 
  
  
 
||
 
||
  
* Three-dimensional coordinate systems
+
* Three-dimensional coordinate systems.
* Distance Formula in R<sup>3</sup>
+
* Distance Formula in Space.
* Standard Equation for a Sphere
+
* Standard Equation for a Sphere.
 
 
 
 
 
|-
 
|-
  
  
|Weeks&nbsp;1/2   
+
|Weeks 1/2   
  
 
||
 
||
 
+
2.1
<div style="text-align: center;">Chapter 2</div>
 
 
 
 
||
 
||
 
    
 
    
  
[[Vectors in The Plane and in Three Dimensions]]  
+
[[Vectors in The Plane, Space]]  
  
 
||
 
||
  
* [[Linear Equations|Line Segments]] <!-- 1073-Mod R -->
+
* [[Linear Equations|Line Segments]]  
* [[Distance Formula| Length of a Line]] <!-- DNE (recommend pairing with discussion of absolute value function) -->
+
* [[Distance Formula| Distance Formula]]  
  
 
||
 
||
  
 
* Vector Algebra Operations  
 
* Vector Algebra Operations  
* Magnitude of a vector
+
* The Magnitude of a vector
 
* Unit Vectors
 
* Unit Vectors
* Midpoint of a Line Segment
+
* The Midpoint of a Line Segment
* Angle between vectors
+
* The Vector projection
* Orthogonal vectors
+
|-
* Vector projection
 
  
|-
 
  
  
|Week&nbsp;2
+
|Week 2
  
 
||
 
||
 
+
2.3
<div style="text-align: center;">Chapter 2</div>
 
 
 
 
||
 
||
 
    
 
    
 +
[[The Dot Product]]
  
[[Vectors in Space]]
 
  
 
||
 
||
  
* [[Vecotors in the Plane and in Three Dimensions]]  
+
* [[Trigonometric Functions|Basic Trig Functions]]
* [[Distance Formula]] <!-- DNE (recommend pairing with discussion of absolute value function) -->
+
* [[Vectors]]
  
 
||
 
||
 
+
* Definition of Dot Product
* Vector Algebra Operations
+
* Properties of Dot Product
* Magnitude of a vector
 
* Unit Vectors
 
* Midpoint of a Line Segment
 
 
* Angle between vectors
 
* Angle between vectors
 
* Orthogonal vectors
 
* Orthogonal vectors
* Vector projection
 
  
 
|-
 
|-
  
  
 
+
|Week 2
|Week&nbsp;2
 
  
 
||
 
||
 
+
2.4
<div style="text-align: center;">Chapter 2</div>
 
 
 
 
||
 
||
 
    
 
    
[[The Dot Product]]  
+
[[The Cross Product]]  
 
 
  
 
||
 
||
  
* [[Trig. Functions|Basic Trig Functions]]  <!-- 1093-2.2 -->
+
* [[Trigonometric Functions|Basic Trig Functions]]   
* [[Inverse Trigonometric Functions|Customary domain restrictions for Trigonometric Functions]] <!-- 1093-3.1 -->
+
* [[Determinants]]  
* [[Vectors]] <!-- 2214-12.2 -->  <!-- 2233-1.1 -->
+
* [[Vectors]]
* '''[[Midpoint Formula]]''' <!-- Grades 6-12 -->
 
  
 
||
 
||
  
* Find the area of plane regions bounded by the graphs of functions.
+
* Definition of Cross Product
 +
* Properties of the cross product
 +
* Area of a parallelogram
 +
* Cross product as a determinant
 +
 
  
 
|-
 
|-
  
  
|Week&nbsp;2
+
 
 +
|Week 3
  
 
||
 
||
 
+
2.5
<div style="text-align: center;">Chapter 2</div>
 
 
 
 
||
 
||
 
    
 
    
[[The Cross Product]]  
+
 
 +
[[Equations of Lines, Planes and Surfaces in Space]]  
  
 
||
 
||
  
* [[Trig. Functions|Basic Trig Functions]] <!-- 1093-2.2 -->
+
* [[The Dot Product]]  
* [[The Dot Product]] <!-- 2214-12.3 -->
+
* [[The Cross Product]]  
* [[Determinants]] <!-- 2233-6.1,6.2 -->
+
* [[Quadratic Functions]]
 +
* [[Parametric Equations]]  
  
 
||
 
||
  
* Define the cross product
+
* Write the vector, parametric equation of a line through a given point in a given direction, and a line through two given points.
* Properties of the cross product
+
* Find the distance from a point to a given line.
* Area of a parallelogram
+
* Write the equation of a plane through a given point with a given normal, and a plane through three given points.
* Cross product as a determinant
+
* Find the distance from a point to a given plane.
 
 
||
 
  
  
Line 174: Line 151:
  
  
|Week&nbsp;3
+
|Week 3
  
 
||
 
||
 
+
2.6
<div style="text-align: center;">Chapter 2</div>
 
 
 
 
||
 
||
 
    
 
    
  
[[Cylinders and Quadratic Surfaces]]  
+
[[Equations of Lines, Planes and Surfaces in Space|Cylinders and Quadratic Surfaces]]  
  
 
||
 
||
  
* [[Quadratic Functions]] <!-- 1073-Mod R -->
+
* [[Quadratic Functions]]  
* [[Parametric Equations]] <!-- 1224-7.1 -->
+
* [[Parametric Equations]]  
* '''[[Conics]]''' <!-- DNE (recommend 1093) -->
+
* [[Conics]]  
  
 
||
 
||
Line 196: Line 171:
 
* Understand basic quadratic surfaces
 
* Understand basic quadratic surfaces
 
* Understand general quadratic surfaces
 
* Understand general quadratic surfaces
 
||
 
 
  
  
Line 204: Line 176:
  
  
 
+
|Weeks 3/4
|Weeks&nbsp;3/4
 
  
 
||
 
||
 
+
3.1, 3.2
<div style="text-align: center;">Chapters 2 and 3</div>
 
 
 
 
||  
 
||  
  
[[Curves in Space and Vector Functions]]  
+
[[Curves in Space and Vector-Valued Functions]]  
  
 
||
 
||
  
* [[Parametric Equations]] <!-- 1224-7.1 -->
+
* [[Parametric Equations]]  
* [[Vectors]]  <!-- 2214-12.2 -->  <!-- 2233-1.1 -->
+
* [[Vectors]]   
* [[The Derivative as a Function]] <!-- 1214-3.2 -->
+
* [[The Derivative as a Function]]  
* [[The Limit of a Function]] <!-- 1214-2.2 -->
+
* [[The Limit of a Function]]  
* [[Continuity]] <!-- 1214-2.4 -->
+
* [[Continuity]]  
* [[The Dot Product]] <!-- 2214-12.3 -->
+
* [[The Dot Product]]  
* [[The Cross Product]] <!-- 2214-12.4 -->
+
* [[The Cross Product]]  
  
 
||
 
||
Line 230: Line 199:
 
* Limits of vector functions
 
* Limits of vector functions
 
* Continuity of vector functions
 
* Continuity of vector functions
* Differentiation of vector functions
 
 
* Differentiation rules for vector functions
 
* Differentiation rules for vector functions
 
* Curves and paths in space
 
* Curves and paths in space
 
||
 
  
  
Line 241: Line 207:
  
  
|Week&nbsp;4
+
|Week 4
  
 
||
 
||
 
+
3.3
<div style="text-align: center;">Chapter 3</div>
 
 
 
 
||
 
||
 
    
 
    
[[Vector-Valued Functions: Arc Length]]
+
[[Arc Length]]
  
 
||
 
||
  
* [[Distance Formula| Length of a Line]] <!-- DNE (recommend pairing with discussion of absolute value function) -->
+
* [[Distance Formula| The Length of a Line Segment]]
* [[Curves in Space and Vector Functions|Vector Functions]] <!-- 1224-7.1 -->
+
* [[Curves in Space and Vector-Valued Functions|Vector Functions]]  
* [[Integrals of Vector Functions]] <!-- 2214-13.2 -->
+
* [[Line Integrals|Integrals of Vector Functions]], [[Derivatives of Vector Functions]]
  
 
||
 
||
  
* Length of a curve in R<sup>3</sup>
+
* The arc Length of a vector function
* General arc length formula
+
* Arc length parameterization
* Arc length for parameterized curves
 
* The Unit tangent vector
 
 
 
||
 
 
 
 
 
  
 
|-
 
|-
Line 272: Line 230:
  
  
|Weeks&nbsp;4/5
+
|Weeks 4/5
  
 
||
 
||
 
+
3.4
<div style="text-align: center;">Chapter 3</div>
 
 
 
 
||
 
||
 
    
 
    
[[Curvature and Normal Vectors]]
+
[[Motion in Space]]
  
 
||
 
||
 
+
* [[Vectors]]
* [[Antiderivatives]] <!-- 1214-4.10 -->
+
* [[Parametric Equations]]  
* [[Vectors]] <!-- 1214-12.2 -->
+
* [[The Cross Product]]  
* [[Parametric Equations]] <!-- 1224-7.1 -->
+
* [[Derivatives of Vector Functions]]  
* [[Arc Length|The Unit Tangent Vector]] <!-- 1224-13.3 -->
 
* '''[[Conics]]''' <!-- DNE (recommend 1093) -->
 
 
 
||
 
 
 
* Curvature in R<sup>2</sup>
 
* Formula for curvature
 
* Definition of Principal unit normal
 
* Curvature and normal vectors for higher dimensions.
 
 
 
 
||
 
||
 
+
* The Unit tangent vector
 +
* The curvature
 +
* The Principal Unit Normal Vector
 +
* The Binormal Vector
 +
* The tangential and normal components of acceleration
 +
* The Torsion
  
 
|-
 
|-
  
  
|Weeks&nbsp;4/5
 
 
||
 
 
<div style="text-align: center;">Chapter 3</div>
 
||
 
 
 
 
[[Tangential and Normal Components of Acceleration]]
 
 
||
 
  
* [[The Cross Product]] <!-- 2214-12.4 -->
+
|Week 5/6
* [[Curves in Space and Vector Functions|Derivatives of Vector Functions]] <!-- 1224-7.1 -->
 
* [[Curvature and Normal Vectors]] <!-- 2214-13.4 -->
 
* [[Determinants]] <!-- 2233-6.1,6.2 -->
 
  
 
||
 
||
 
+
4.1
* Binormal Vectors
 
* Definition of tangential and normal components of acceleration
 
* Torsion
 
 
 
||
 
 
 
 
 
 
 
|-
 
 
 
 
 
 
 
|Week&nbsp;6 
 
 
 
||
 
 
 
<div style="text-align: center;">Chapter 4</div>
 
 
 
 
||
 
||
 
    
 
    
Line 347: Line 266:
 
||
 
||
  
* [[Domain of a Function]] <!-- 1073-Mod 1.2 -->
+
* [[Domain of a Function]]  
* [[Range of a Function]] <!-- 1073-Mod 1.2 -->
+
* [[Range of a Function]]  
* [[Solving Inequalities| Interval Notation]] <!-- 1073-Mod R -->
+
* [[Solving Equations and Inequalities]]  
* [[Graphs| Graphing a Function]] <!-- 1073-Mod R -->
+
* [[Graphs| Graphing a Function]]  
* '''[[Conics|Equation of a Circle]]''' <!-- DNE (recommend 1093) -->
 
 
 
  
 
||
 
||
 
+
* Functions of two variables
 +
* Functions of three variables
 
* Domain and range of multivariable functions
 
* Domain and range of multivariable functions
* Functions with two variables
 
 
* Bounded regions
 
* Bounded regions
 
* Graphs and level curves of two variable functions
 
* Graphs and level curves of two variable functions
* Functions of three variables
+
* Level surfaces of three variable functions
* Level surfaces
 
 
 
 
 
 
 
 
|-
 
|-
  
  
|Week&nbsp;6
+
|Week 6
  
 
||
 
||
 
+
4.2
<div style="text-align: center;">Chapter 4</div>
 
 
 
 
||
 
||
 
    
 
    
  
[[Limits and Continuity in Higher Dimensions]]
+
[[Limit and Continuity of Function of Several Variables]]
  
 
||
 
||
  
* [[The Limit of a Function]] <!-- 1214-2.2 -->
+
* [[Continuity]]  
* [[Continuity]] <!-- 1214-2.4 -->
+
* [[The Limit Laws]]  
* [[The Limit Laws]] <!-- 1214-2.3 -->
+
* [[Composition of Functions]]  
* [[Composition of Functions]] <!-- 1073-Mod 7.1 -->
+
* [[The Dot Product]]  
* [[The Dot Product]] <!-- 2214-12.3 -->
 
* [[The Cross Product]] <!-- 2214-12.4 -->
 
  
 
||
 
||
  
 
* Limits of functions of two variables
 
* Limits of functions of two variables
* Properties of limits of functions of two variables
+
* Limits of functions of more than two variables
* Continuity for functions of two variables
+
* Properties of limits of functions of several variables
 +
* Two path test of non-existing of a limit
 +
* Continuity for functions of several variables
 
* Continuity of composition
 
* Continuity of composition
* Functions of more than two variables
+
* Extreme values on closed and bounded domains
* Extreme values on closed and bounded sets
 
 
 
 
 
 
|-
 
|-
  
  
|Week&nbsp;6
+
|Week 6
  
 
||
 
||
 
+
4.3
<div style="text-align: center;">Chapter 4</div>
 
 
 
 
||   
 
||   
  
Line 413: Line 319:
 
||
 
||
  
* [[The Derivative as a Function| Second derivatives]] <!-- 1214-3.2 -->
+
* [[The Derivative as a Function|The first]] and [[The Second Derivative|second derivative]] of a function
* [[Limits and Continuity in Higher Dimensions]] <!-- 2214-14.2 -->
+
* [[Limit and Continuity of Function of Several Variables]]  
* [[Functions of Several Variables]] <!-- 1214-14.1 -->
+
 
  
 
||
 
||
 
 
* Partial derivatives for functions of two variables
 
* Partial derivatives for functions of two variables
 
* Partial derivatives for functions of more than two variables
 
* Partial derivatives for functions of more than two variables
Line 424: Line 329:
 
* Second order partial derivatives
 
* Second order partial derivatives
 
* Mixed derivative theorem
 
* Mixed derivative theorem
* Define the derivative for functions of two variables
 
 
 
 
|-
 
|-
  
  
|Week&nbsp;7  
+
|Week 7
  
 
||
 
||
 
+
4.4
<div style="text-align: center;">Chapter 4</div>
 
 
 
 
||   
 
||   
  
[[The Chain Rule for Functions of more than One Variable]]
+
[[Directional Derivatives and Gradient Vectors]]
  
 
||
 
||
 
+
* [[Trigonometric Functions]]  
* [[Differentiation Rules]] <!-- 1214-3.3 -->
+
* [[Vectors, Unit Vectors]]
* [[The Chain Rule]] <!-- 1214-3.6 -->
+
* [[Partial Derivatives]]
* [[Implicit Differentiation]] <!-- 1214-3.8 -->
+
* [[Gradients]]
* [[Parametric Equations]] <!-- 1224-7.1 -->
+
* [[The Dot Product]]  
* [[Partial Derivatives]] <!-- 1214-14.3 -->
 
 
 
 
||
 
||
 
+
* Directional derivatives for functions of two variables
* Chain rule for functions of one independent variable and two intermediate variables.
+
* Gradients
* Chain rule for functions of one independent variable and three intermediate variables.
+
* Properties of directional derivatives
* Chain rule for functions of two independent variable and two intermediate variables.
+
* Tangents to level curves
* Additional method for implicit differentiation.
+
* Directional derivatives for functions of three variables
* The general chain rule
 
 
 
 
|-
 
|-
  
  
|Week&nbsp;7
+
|Week 7  
  
 
||
 
||
 
+
4.5
<div style="text-align: center;">Chapter 4</div>
 
 
 
 
||   
 
||   
 +
[[Tangent Plane]],
 +
[[Differentiability]]
  
[[Directional Derivatives and Gradient Vectors]]
 
  
 
||
 
||
 
+
* [[Partial Derivatives]]   
* [[Trigonometric Functions]]  <!-- 1093-2.2 -->
+
* [[Parametric Equations]] of Lines
* [[The Chain Rule for Functions of more than One Variable]] <!-- 2214-14.4 -->
+
* [[Equations of Lines, Planes and Surfaces in Space]]  
* [[Vectors|Unit Vectors]]  <!-- 2214-12.2 -->  <!-- 2233-1.1 -->
 
* [[Partial Derivatives]]  <!-- 1214-14.3 -->
 
* [[The Dot Product]] <!-- 2214-12.3 -->
 
  
 
||
 
||
 +
* Determine the equation of a plane tangent to a given surface at a point
 +
* Determine the parametric equation of a normal line to a given surface at a point
 +
* The linear approximation of a function of two variables at a point
 +
* The definition of differentiability for  a function of two variables
 +
* Differentiability implies  Continuity 
 +
* Continuity of First Partial Derivatives implies Differentiability
 +
* The definition of total differentiability for  a function of two variables
 +
* Use the total differential to approximate the change in a function of two variables
 +
|-
  
* Direction Derivatives in the plane
 
* Gradients
 
* Properties of directional derivatives
 
* Tangents to level curves
 
* Directional derivatives for functions of three variables
 
* The chain rule for paths
 
 
 
 
|-
 
  
  
|Week&nbsp;7  
+
|Week 7  
  
 
||
 
||
 
+
4.6
<div style="text-align: center;">Chapter 4</div>
 
 
 
 
||   
 
||   
  
[[Tangent Planes and Differentials]]
+
[[The Chain Rule for Functions of more than One Variable]]
  
 
||
 
||
 
+
* [[Differentiation Rules]]  
* [[Linear Approximations and Differentials]] <!-- 1214-4.2 -->
+
* [[The Chain Rule]]  
* [[Parametric Equations]] <!-- 1224-7.1 -->
+
* [[Partial Derivatives]]   
* [[Partial Derivatives]]  <!-- 1214-14.3 -->
 
* [[Linear Equations|Slope of a Line]] <!-- 1073-Mod R -->
 
* [[Cylinders and Quadratic Surfaces]] <!-- 2214-12.5 -->
 
  
 
||
 
||
 
+
* Chain rule for functions of one independent variable and several intermediate variables.
* Tangent Planes and Normal lines
+
* Chain rule for functions of two independent variable and several intermediate variables.
* The plane tangent to a surface
+
* Method for implicit differentiation.
* How to linearize a function of two variables
+
* The general chain rule for functions of several independent variables
* Differentials for functions of two variables
 
* Linearization and differentials for functions of more than two variables
 
 
 
 
 
 
 
 
|-
 
|-
 
+
|Week 8  
 
 
|Week&nbsp;8  
 
  
 
||
 
||
 
+
4.7
<div style="text-align: center;">Chapter 4</div>
 
 
 
 
||   
 
||   
  
Line 533: Line 410:
  
 
||
 
||
 
+
* [[Extreme values on closed and bounded domains]]  
* [[Limits and Continuity in Higher Dimensions|Extreme values on closed and bounded sets]] <!-- 2214-14.2 -->
+
* [[Partial Derivatives]]   
* [[Partial Derivatives]]  <!-- 1214-14.3 -->
+
* [[Maxima and Minima|Maxima, Minima and Critical Points of a Function]]  
* [[Maxima and Minima|Critical Points of a Function]] <!-- 1214-4.3 -->
+
* [[Limit and Continuity of Function of Several Variables]]  
* [[Limits and Continuity in Higher Dimensions|Continuity of functions with two variables]] <!-- 2214-14.2 -->
 
  
 
||
 
||
 
 
* The derivative test for local extreme values
 
* The derivative test for local extreme values
 +
* Extreme values on closed and bounded domains
 
* Critical points and saddle points for functions of two variables
 
* Critical points and saddle points for functions of two variables
 
* Second derivative test for local extreme values
 
* Second derivative test for local extreme values
 
* Absolute maxima and minima on closed and bounded regions
 
* Absolute maxima and minima on closed and bounded regions
 
 
 
 
|-
 
|-
 
+
|Week 8/9
 
 
 
 
|Week&nbsp;10
 
  
 
||
 
||
 
+
4.8
<div style="text-align: center;">Chapter 5</div>
 
 
 
 
||   
 
||   
  
[[Double and Iterated Integrals over Rectangles]]
+
[[Lagrange Multipliers]]
  
 
||
 
||
  
* [[Approximating Areas]] <!-- 1214-5.1 -->
+
* [[Partial Derivatives]]
* [[The Definite Integral|Limits of Riemann Sums]] <!-- 1214-5.2 -->
+
* [[Critical Points of a Function]]  
  
 
||
 
||
 +
* Lagrange Multipliers with One Constraint
 +
* Lagrange Multipliers with Two Constraints
 +
|-
  
* Double Integrals
 
* Fubini's Theorem (part 1)
 
  
  
 
+
|Week 9/10
|-
 
 
 
 
 
|Week&nbsp;10
 
  
 
||
 
||
 
+
5.1
<div style="text-align: center;">Chapter 5</div>
 
 
 
 
||   
 
||   
  
[[Double Integrals over General Regions]]
+
[[Multiple Integrals|Double Integrals over Rectangular Regions]]
  
 
||
 
||
  
* [[Continuity]] <!-- 1214-3.5 -->
+
* [[Approximating Areas]]  
* [[Determining Volumes by Slicing]] <!-- 1224-2.2 -->
+
* [[The Definite Integral|Limits of Riemann Sums]]  
* [[Double and Iterated Integrals over Rectangles]] <!-- 2214-15.1 -->
 
  
 
||
 
||
 
+
* Double Integral is the limit of Double Sums.
* Double integrals over bounded, nonrectangular regions
+
* Double Integrals over Rectangular Regions.
* Volumes of solid regions
+
* Interated Integrals.
* Fubini's theorem (part 2)  
+
* Fubini's Theorem (part 1).
* Finding the limits of integration for regions in the plane
 
* Properties of double Integrals
 
 
 
 
 
 
 
 
|-
 
|-
  
  
 
+
|Week 10
|Week&nbsp;11   
 
  
 
||
 
||
 
+
5.2
<div style="text-align: center;">Chapter 5</div>
 
 
 
 
||   
 
||   
  
[[Double Integrals in Polar Coordinates]]
+
[[Multiple Integrals|Double Integrals over General Regions]]
  
 
||
 
||
  
* [[Double Integrals over General Regions]] <!-- 2214-15.2 -->
+
* [[Continuity]]
* [[Parametric Equations| Polar Coordinates]] <!-- 1093-5.1 -->
+
* [[Determining Volumes by Slicing]]  
 +
* [[Multiple Integrals|Double and Iterated Integrals over Rectangular regions]]  
  
 
||
 
||
 
+
* Double integrals over bounded, general regions.
* Integrals in Polar Form
+
* Properties of double Integrals.
* Finding limits of integration for polar coordinates
+
* Fubini's theorem (part 2)
* Changing Cartesian Integrals into Polar Integrals
+
* Changing the order of Integration.
 
+
* Calculating Volumes, Areas and Average Values
 
 
 
|-
 
|-
  
  
  
|Week&nbsp;11
+
|Week 11  
  
 
||
 
||
 +
5.3
 +
|| 
  
<div style="text-align: center;">Chapter 5</div>
+
[[Multiple Integrals|Double Integrals in Polar Coordinates]]
 
 
||
 
 
 
[[Applications of Double Integrals]]
 
  
 
||
 
||
  
* [[Moments and Center of Mass]] <!-- 1224-2.6 -->
+
* [[Multiple Integrals|Double Integrals over General Regions]]  
* [[Triple Integrals in Rectangular Coordinates]] <!-- 2214-15.5 -->
+
* [[Polar Coordinates]]  
* [[Partial Derivatives]] <!-- 1214-14.3 -->
 
  
 
||
 
||
 
+
* Double Integrals over rectangular polar  regions.
* Masses and First moments
+
* Double Integrals over general polar regions.
* Moments of Inertia
+
* Changing Cartesian Integrals into Polar Integrals.
 
+
* Using Double Integrals in Polar Coordinates to find Volumes, Areas.
 
 
 
 
 
|-
 
|-
  
  
 
+
|Week 11  
|Week&nbsp;11  
 
  
 
||
 
||
 
+
5.4
<div style="text-align: center;">Chapter 5</div>
 
 
 
 
||  
 
||  
  
[[Triple Integrals in Rectangular Coordinates]]
+
[[Multiple Integrals|Triple Integrals in Rectangular Coordinates]]
  
 
||
 
||
  
* [[Double and Iterated Integrals over Rectangles]] <!-- 2214-15.1 -->
+
* [[Multiple Integrals|Double Integrals]]  
* [[Area by Double Integration]] <!-- 2214-15.3 -->
+
* [[Multiple Integrals|Area by Double Integration]]  
* '''[[Change of Variables]]''' <!-- DNE (recommend 1073) -->
+
* [[Change of Variables]]  
  
 
||
 
||
  
* Triple Integrals
+
* Triple Integrals over general bounded regions.
* Volume of a region in space
+
* Finding Volumes by evaluating Triple Integrals.
* Finding the limits of integration for triple integrals
+
* Average value of a function in space.
* Average value of a function in space
+
* Changing Integration Order and Coordinate systems.
 
 
 
 
 
 
 
|-
 
|-
  
  
  
|Week&nbsp;12
+
|Week 12
  
 
||
 
||
 
+
5.5
<div style="text-align: center;">Chapter 5</div>
 
 
 
 
||  
 
||  
  
[[Triple Integrals in Cylindrical and Spherical Coordinates]]
+
[[Multiple Integrals|Triple Integrals in Cylindrical and Spherical Coordinates]]
  
 
||
 
||
  
* [[Double Integrals in Polar Form]]  <!-- 2214-15.4 -->
+
* [[Multiple Integrals|Double Integrals in Polar Form]]   
* [[Parametric Equations| Polar Form]] <!-- 1093-5.1 -->
+
* [[Multiple Integrals|Triple Integrals in Rectangular Coordinates]]  
* [[Triple Integrals in Rectangular Coordinates]] <!-- 2214-15.5 -->
 
  
 
||
 
||
  
* Integration in Cylindrical Coordinates
+
* Integrations  in Cylindrical Coordinates.
* Equations relating rectangular and cylindrical coordinates
+
* Equations relating rectangular and cylindrical coordinates.
* Spherical coordinates and integrations
+
* Changing Cartesian integrations into Cylindrical integrations.
* Equations relating spherical coordinates to Cartesian and cylindrical coordinates
+
* Integrations in Spherical coordinates.
 
+
* Equations relating spherical coordinates to Cartesian and cylindrical coordinates.
 
+
* Changing Cartesian integrations into Cylindrical integrations.
 
 
 
|-
 
|-
  
  
|Week&nbsp;12  
+
|Week 13  
  
 
||
 
||
 
+
5.6
<div style="text-align: center;">Chapter 5</div>
 
 
 
 
||
 
||
 
    
 
    
[[Applications of Triple Integrals]]
+
[[Multiple Integrals|Applications of Multiple Integrals]]
  
 
||
 
||
  
* [[Moments and Center of Mass]] <!-- 1224-2.6 -->
+
* [[Multiple Integrals|Double Integral]]  
* [[Triple Integrals in Rectangular Coordinates]] <!-- 2214-15.5 -->
+
* [[Multiple Integrals|Triple Integrals]]  
* [[Partial Derivatives]] <!-- 1214-14.3 -->
 
  
 
||
 
||
  
* Masses and First moments
+
* Finding Masses, Moments, Centers of Masses, Moments of Inertia in Two Dimensions.
* Moments of Inertia
+
* Finding Masses, Moments, Centers of Masses, Moments of Inertia in Three Dimensions.
 
 
 
 
 
 
 
|-
 
|-
 +
|Week 13/14 
  
 
+
||
|Week&nbsp;14
+
5.7
 +
||
 +
 
 +
[[Multiple Integrals|Change of Variables in Multiple Integrals]]
  
 
||
 
||
  
<div style="text-align: center;">Chapter 6</div>
+
* [[Multiple Integrals|Double Integral]]
 +
* [[Multiple Integrals|Triple Integrals]]
  
||
+
||
  
[[Line Integrals of Scalar Functions]]
+
* Determine the image of a region under a given transformation of variables.
 +
* Compute the Jacobian of a given transformation.
 +
* Evaluate a double integral using a change of variables.
 +
* Evaluate a triple integral using a change of variables.
 +
|-
 +
|Week 14
  
 +
||
 +
6.1
 
||
 
||
  
* [[Parametric Equations]] <!-- 1224-7.1 -->
+
[[Vector Fields]]
* [[Curves in Space and Vector Functions]] <!-- 2214-13.1 -->
 
* [[Arc Length]] <!-- 1224-13.3 -->
 
  
 
||
 
||
  
* Evaluating a Line Integral
+
* [[The Dot Product]] <!-- 2214-12.3 -->
* Additivity of Line Integrals
+
* [[Directional Derivatives and Gradient Vectors]]
* Mass and Moments
+
||
* Line Integrals in the plane
+
* Vector Fields in a plane.
 
+
* Vector Fields in Space.
 
+
* Potential Functions.
 
+
* Gradient Fields, Conservative Vector Fields.
 +
* The Cross-Partial Test for Conservative Vector Fields.
 +
* Determining Whether a Vector Field is conservative.
 
|-
 
|-
  
  
 
+
|Week 14  
|Week&nbsp;14  
 
  
 
||
 
||
 +
6.2
 +
|| 
  
<div style="text-align: center;">Chapter 6</div>
+
[[Line Integrals]]
  
 
||
 
||
  
[[Vector Fields]]
+
* [[Parametric Equations]]
 +
* [[Curves in Space and Vector-Valued Functions]]
 +
* [[Arc Length]]  
  
 
||
 
||
 +
* Line Integrals of  functions a long a smooth curves in a planer or in space
 +
* Line Integrals of  of vector fields along an oriented curves in a plane or space..
 +
* Properties of Vector Line Integrals.
 +
* Evaluating  Line Integrals.
 +
* Applications of line integrals: Calculating Arc Length, the Mass of a wire, Work done by a force, Flux across a curve, Circulation of a force.
 +
|-
  
* [[The Dot Product]] <!-- 2214-12.3 -->
 
* [[Directional Derivatives and Gradient Vectors]] <!-- 2214-14.5 -->
 
* [[Parametric Equations]] <!-- 1224-7.1 -->
 
* [[Line Integrals of Scalar Functions]] <!-- 2214-16.1 -->
 
 
||
 
 
* Vector Fields
 
* Gradient Fields
 
* Line Integrals of vector fields
 
* Line integrals with respect to each components direction
 
* Work done by a force over a curve in space
 
* Flow integrals and circulation for velocity fields
 
* Flux across a simple closed plane curve
 
  
  
|-
 
  
  
|Week&nbsp;14   
+
|Week 14/15  
  
 
||
 
||
 
+
6.3
<div style="text-align: center;">Chapter 6</div>
 
 
 
 
||
 
||
  
[[Conservation Fields]]
+
[[Conservative Vector Fields]]
  
 
||
 
||
  
* [[Vector Fields and Line Integrals]] <!-- 2214-16.2 -->
+
* [[Vector Fields and Line Integrals]]  
* [[Partial Derivatives]]  <!-- 1214-14.3 -->
+
* [[Partial Derivatives]]   
* [[Vector Fields and Line Integrals|Gradient Fields]] <!-- 2214-16.2 -->
 
* [[Tangent Planes and Differentials]]  <!-- 2214-14.6 -->
 
  
 
||
 
||
 
+
* Describe simple and closed curves
* Path Independence
+
* Define connected and simply connected regions.
* Piecewise smooth curves and connected domains in open regions
+
* Explain how to test a vector field to determine whether it is conservative.
* Line integrals in Conservation fields
+
* Find a potential function for a conservative vector field.
* Finding potentials for conservative fields
+
* Use the Fundamental Theorem for Line Integrals to evaluate a line integral of a vector field.
* Exact Differential forms
 
 
 
 
 
 
|-
 
|-
  
  
|Weeks&nbsp;14/15   
+
|Weeks 14/15   
  
 
||
 
||
 
+
6.4
<div style="text-align: center;">Chapter 6</div>
 
 
 
 
||
 
||
  
 
[[Green's Theorem]]
 
[[Green's Theorem]]
 +
 +
[[Stokes' Theorem]]
  
 
||
 
||
  
* [[Vector Fields and Line Integrals]] <!-- 2214-16.2 -->
+
* [[Vector Fields]]
* [[Partial Derivatives]]  <!-- 1214-14.3 -->
+
* [[Line Integrals]]  
* [[Dot Product]] <!-- 2214-16.3 -->
+
* [[Partial Derivatives]]   
* [[Path Independence and Conservation Fields]] <!-- 2214-16.3 -->
+
* [[The Dot Product]]  
 +
* [[Line Integrals|Path Independence]]
 +
* [[Conservative Vector Fields]]  
  
 
||
 
||
  
* Circulation Density
+
* Circulation form of Green's Theorem.
* Divergence (flux density) of a vector field
+
* Flux Form of Green’s Theorem.
* The two forms of Green's theorem (Tangential and Normal forms)
+
* Applying Green's Theorem to find Work, Flux.
* Green's theorem for evaluating line integrals
 
  
 
+
|}
|-
 

Latest revision as of 10:10, 21 June 2023

The textbook for this course is Calculus (Volume 3) by Gilbert Strang, Edwin Herman, et al.

Topics List

Date Sections Topics Prerequisite Skills Student Learning Outcomes
Week 1

1.1

Polar Coordinates

  • Plot points using polar coordinates and find several polar coordinates of a single point
  • Convert polar coordinates to rectangular coordinates and vice versa
  • Transform equations from polar form to rectangular form and vice versa
Week 1

1.2

Three-Dimensional Coordinate Systems


  • Three-dimensional coordinate systems.
  • Distance Formula in Space.
  • Standard Equation for a Sphere.
Weeks 1/2

2.1


Vectors in The Plane, Space

  • Vector Algebra Operations
  • The Magnitude of a vector
  • Unit Vectors
  • The Midpoint of a Line Segment
  • The Vector projection
Week 2

2.3

The Dot Product


  • Definition of Dot Product
  • Properties of Dot Product
  • Angle between vectors
  • Orthogonal vectors
Week 2

2.4

The Cross Product

  • Definition of Cross Product
  • Properties of the cross product
  • Area of a parallelogram
  • Cross product as a determinant


Week 3

2.5


Equations of Lines, Planes and Surfaces in Space

  • Write the vector, parametric equation of a line through a given point in a given direction, and a line through two given points.
  • Find the distance from a point to a given line.
  • Write the equation of a plane through a given point with a given normal, and a plane through three given points.
  • Find the distance from a point to a given plane.


Week 3

2.6


Cylinders and Quadratic Surfaces

  • Find equations for cylinders that are generated by rotating lines that are parallel to a plane
  • Understand basic quadratic surfaces
  • Understand general quadratic surfaces


Weeks 3/4

3.1, 3.2

Curves in Space and Vector-Valued Functions

  • Vector functions
  • Limits of vector functions
  • Continuity of vector functions
  • Differentiation rules for vector functions
  • Curves and paths in space


Week 4

3.3

Arc Length

  • The arc Length of a vector function
  • Arc length parameterization
Weeks 4/5

3.4

Motion in Space

  • The Unit tangent vector
  • The curvature
  • The Principal Unit Normal Vector
  • The Binormal Vector
  • The tangential and normal components of acceleration
  • The Torsion
Week 5/6

4.1


Functions of Several Variables

  • Functions of two variables
  • Functions of three variables
  • Domain and range of multivariable functions
  • Bounded regions
  • Graphs and level curves of two variable functions
  • Level surfaces of three variable functions
Week 6

4.2


Limit and Continuity of Function of Several Variables

  • Limits of functions of two variables
  • Limits of functions of more than two variables
  • Properties of limits of functions of several variables
  • Two path test of non-existing of a limit
  • Continuity for functions of several variables
  • Continuity of composition
  • Extreme values on closed and bounded domains
Week 6

4.3

Partial Derivatives


  • Partial derivatives for functions of two variables
  • Partial derivatives for functions of more than two variables
  • Partial derivatives and continuity
  • Second order partial derivatives
  • Mixed derivative theorem
Week 7

4.4

Directional Derivatives and Gradient Vectors

  • Directional derivatives for functions of two variables
  • Gradients
  • Properties of directional derivatives
  • Tangents to level curves
  • Directional derivatives for functions of three variables
Week 7

4.5

Tangent Plane, Differentiability


  • Determine the equation of a plane tangent to a given surface at a point
  • Determine the parametric equation of a normal line to a given surface at a point
  • The linear approximation of a function of two variables at a point
  • The definition of differentiability for a function of two variables
  • Differentiability implies Continuity
  • Continuity of First Partial Derivatives implies Differentiability
  • The definition of total differentiability for a function of two variables
  • Use the total differential to approximate the change in a function of two variables
Week 7

4.6

The Chain Rule for Functions of more than One Variable

  • Chain rule for functions of one independent variable and several intermediate variables.
  • Chain rule for functions of two independent variable and several intermediate variables.
  • Method for implicit differentiation.
  • The general chain rule for functions of several independent variables
Week 8

4.7

Maxima and Minima Problems

  • The derivative test for local extreme values
  • Extreme values on closed and bounded domains
  • Critical points and saddle points for functions of two variables
  • Second derivative test for local extreme values
  • Absolute maxima and minima on closed and bounded regions
Week 8/9

4.8

Lagrange Multipliers

  • Lagrange Multipliers with One Constraint
  • Lagrange Multipliers with Two Constraints
Week 9/10

5.1

Double Integrals over Rectangular Regions

  • Double Integral is the limit of Double Sums.
  • Double Integrals over Rectangular Regions.
  • Interated Integrals.
  • Fubini's Theorem (part 1).
Week 10

5.2

Double Integrals over General Regions

  • Double integrals over bounded, general regions.
  • Properties of double Integrals.
  • Fubini's theorem (part 2)
  • Changing the order of Integration.
  • Calculating Volumes, Areas and Average Values
Week 11

5.3

Double Integrals in Polar Coordinates

  • Double Integrals over rectangular polar regions.
  • Double Integrals over general polar regions.
  • Changing Cartesian Integrals into Polar Integrals.
  • Using Double Integrals in Polar Coordinates to find Volumes, Areas.
Week 11

5.4

Triple Integrals in Rectangular Coordinates

  • Triple Integrals over general bounded regions.
  • Finding Volumes by evaluating Triple Integrals.
  • Average value of a function in space.
  • Changing Integration Order and Coordinate systems.
Week 12

5.5

Triple Integrals in Cylindrical and Spherical Coordinates

  • Integrations in Cylindrical Coordinates.
  • Equations relating rectangular and cylindrical coordinates.
  • Changing Cartesian integrations into Cylindrical integrations.
  • Integrations in Spherical coordinates.
  • Equations relating spherical coordinates to Cartesian and cylindrical coordinates.
  • Changing Cartesian integrations into Cylindrical integrations.
Week 13

5.6

Applications of Multiple Integrals

  • Finding Masses, Moments, Centers of Masses, Moments of Inertia in Two Dimensions.
  • Finding Masses, Moments, Centers of Masses, Moments of Inertia in Three Dimensions.
Week 13/14

5.7

Change of Variables in Multiple Integrals

  • Determine the image of a region under a given transformation of variables.
  • Compute the Jacobian of a given transformation.
  • Evaluate a double integral using a change of variables.
  • Evaluate a triple integral using a change of variables.
Week 14

6.1

Vector Fields

  • Vector Fields in a plane.
  • Vector Fields in Space.
  • Potential Functions.
  • Gradient Fields, Conservative Vector Fields.
  • The Cross-Partial Test for Conservative Vector Fields.
  • Determining Whether a Vector Field is conservative.
Week 14

6.2

Line Integrals

  • Line Integrals of functions a long a smooth curves in a planer or in space
  • Line Integrals of of vector fields along an oriented curves in a plane or space..
  • Properties of Vector Line Integrals.
  • Evaluating Line Integrals.
  • Applications of line integrals: Calculating Arc Length, the Mass of a wire, Work done by a force, Flux across a curve, Circulation of a force.
Week 14/15

6.3

Conservative Vector Fields

  • Describe simple and closed curves
  • Define connected and simply connected regions.
  • Explain how to test a vector field to determine whether it is conservative.
  • Find a potential function for a conservative vector field.
  • Use the Fundamental Theorem for Line Integrals to evaluate a line integral of a vector field.
Weeks 14/15

6.4

Green's Theorem

Stokes' Theorem

  • Circulation form of Green's Theorem.
  • Flux Form of Green’s Theorem.
  • Applying Green's Theorem to find Work, Flux.