|
|
Line 140: |
Line 140: |
| | | |
| * [https://en.wikibooks.org/wiki/Calculus/Chain_Rule Chain Rule], WikiBooks Calculus | | * [https://en.wikibooks.org/wiki/Calculus/Chain_Rule Chain Rule], WikiBooks Calculus |
| + | |
| + | ==Licensing== |
| + | Content obtained and/or adapted from: |
| + | * [https://en.wikibooks.org/wiki/Calculus/Chain_Rule Chain Rule, WikiBooks: Calculus] under a CC BY-SA license |
Revision as of 15:06, 27 October 2021
The chain rule is a method to compute the derivative of the functional composition of two or more functions.
If a function
depends on a variable
, which in turn depends on another variable
, that is
, then the rate of change of
with respect to
can be computed as the rate of change of
with respect to
multiplied by the rate of change of
with respect to
.
The method is called the "chain rule" because it can be applied sequentially to as many functions as are nested inside one another. [1] For example, if
is a function of
which is in turn a function of
, which is in turn a function of
, that is
![{\displaystyle f{\bigl (}g(h(x)){\bigr )}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/348c9dd84d8acaade3d4d2abce30f812cf5ac29f)
the derivative of
with respect to
is given by
and so on.
A useful mnemonic is to think of the differentials as individual entities that can be canceled algebraically, such as
![{\displaystyle {\frac {df}{dx}}={\frac {df}{\cancel {dg}}}\cdot {\frac {\cancel {dg}}{\cancel {dh}}}\cdot {\frac {\cancel {dh}}{dx}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c3d9082a3c91d92e98a71e50cab6e196b8a41395)
However, keep in mind that this trick comes about through a clever choice of notation rather than through actual algebraic cancellation.
The chain rule has broad applications in physics, chemistry, and engineering, as well as being used to study related rates in many disciplines. The chain rule can also be generalized to multiple variables in cases where the nested functions depend on more than one variable.
Examples
Example I
Suppose that a mountain climber ascends at a rate of
. The temperature is lower at higher elevations; suppose the rate by which it decreases is
per kilometer. To calculate the decrease in air temperature per hour that the climber experiences, one multiplies
by
, to obtain
. This calculation is a typical chain rule application.
Example II
Consider the function
. It follows from the chain rule that
![{\displaystyle f(x)=(x^{2}+1)^{3}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3e023abc8a3bdc67236cb038bc48957f2d9db9ad) |
Function to differentiate
|
![{\displaystyle u(x)=x^{2}+1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6514060eedaa6b5be3613355f55970a5c179136b) |
Define as inside function
|
![{\displaystyle f(x)=u(x)^{3}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e1fc2a8b0b1003653baddea751ce34cf8fab991a) |
Express in terms of
|
![{\displaystyle {\frac {df}{dx}}={\frac {df}{du}}\cdot {\frac {du}{dx}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/12e517d66374fa13d965adcf21cf7d9afe17b959) |
Express chain rule applicable here
|
![{\displaystyle {\frac {df}{dx}}={\frac {d}{du}}u^{3}\cdot {\frac {d}{dx}}(x^{2}+1)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ee2625b64a9a0b873958eff792d041ae8b8843c4) |
Substitute in and
|
![{\displaystyle {\frac {df}{dx}}=3u^{2}\cdot 2x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7c224ec2f85159dd2ae81f3721338d27841c7dec) |
Compute derivatives with power rule
|
![{\displaystyle {\frac {df}{dx}}=3(x^{2}+1)^{2}\cdot 2x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/72ba3afd26bd7a66dfbd4ff73fa2a2198d7e9f2b) |
Substitute back in terms of
|
![{\displaystyle {\frac {df}{dx}}=6x(x^{2}+1)^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a60f229b32d9d12e07f6c5b7e1109ce104016f0a) |
Simplify.
|
Example III
In order to differentiate the trigonometric function
![{\displaystyle f(x)=\sin(x^{2})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7494a0cdfe9d755f913e4d98a7c69d7b713d504a)
one can write:
![{\displaystyle f(x)=\sin(x^{2})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7494a0cdfe9d755f913e4d98a7c69d7b713d504a) |
Function to differentiate
|
![{\displaystyle u(x)=x^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fc2bbf4a3525f407bd9fd97f2886d6b06ed1ccb3) |
Define as inside function
|
![{\displaystyle f(x)=\sin(u)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bfb7ad5dcd8cf237af9e564fb0748218a3ed2b54) |
Express in terms of
|
![{\displaystyle {\frac {df}{dx}}={\frac {df}{du}}\cdot {\frac {du}{dx}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/12e517d66374fa13d965adcf21cf7d9afe17b959) |
Express chain rule applicable here
|
![{\displaystyle {\frac {df}{dx}}={\frac {d}{du}}\sin(u)\cdot {\frac {d}{dx}}(x^{2})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c09373a9eb41b707b8504c55f4fa15ff2385a12a) |
Substitute in and
|
![{\displaystyle {\frac {df}{dx}}=\cos(u)\cdot 2x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6753a41aab6907aeb2431bec6716ceeb59f58ea8) |
Evaluate derivatives
|
![{\displaystyle {\frac {df}{dx}}=\cos(x^{2})\cdot 2x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a990c5ac311c46b3338403b4deb537d831acbdce) |
Substitute in terms of .
|
Example IV: absolute value
The chain rule can be used to differentiate
, the absolute value function:
![{\displaystyle f(x)=|x|}](https://wikimedia.org/api/rest_v1/media/math/render/svg/094ddc9667a7f47e36687c1d2a94d35c0c7d5c67) |
Function to differentiate
|
![{\displaystyle f(x)={\sqrt {x^{2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/10e87ee703a644ddba22836bc1eb52a46d89184d) |
Equivalent function
|
![{\displaystyle u(x)=x^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fc2bbf4a3525f407bd9fd97f2886d6b06ed1ccb3) |
Define as inside function
|
![{\displaystyle f(x)=u(x)^{\frac {1}{2}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/36c6b4bfea98d726ccd3577fbbf65280ee88bfd9) |
Express in terms of
|
![{\displaystyle {\frac {df}{dx}}={\frac {df}{du}}\cdot {\frac {du}{dx}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/12e517d66374fa13d965adcf21cf7d9afe17b959) |
Express chain rule applicable here
|
![{\displaystyle {\frac {df}{dx}}={\frac {d}{du}}u^{\frac {1}{2}}\cdot {\frac {d}{dx}}(x^{2})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/35e226921ea136b4ed1699e1206abb80d96d3dbd) |
Substitute in and
|
![{\displaystyle {\frac {df}{dx}}={\frac {u^{-{\frac {1}{2}}}}{2}}\cdot 2x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4f25e17d1c63b3d9c053a0b40b32894b3aa27ced) |
Compute derivatives with power rule
|
![{\displaystyle {\frac {df}{dx}}={\frac {(x^{2})^{-{\frac {1}{2}}}}{2}}\cdot 2x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/327fb691e36a57c2fd6fbc5f1e35efabd5388fc4) |
Substitute back in terms of
|
![{\displaystyle {\frac {df}{dx}}={\frac {x}{\sqrt {x^{2}}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5d831d957b3329aa43986946a3157e5a876c9058) |
Simplify
|
![{\displaystyle {\frac {df}{dx}}={\frac {x}{|x|}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/db81fea0ef0140a396e1ec7ea9e3439e9290d957) |
Express as absolute value.
|
Example V: three nested functions
The method is called the "chain rule" because it can be applied sequentially to as many functions as are nested inside one another. For example, if
, sequential application of the chain rule yields the derivative as follows (we make use of the fact that
, which will be proved in a later section):
![{\displaystyle f(x)=e^{\sin(x^{2})}=e^{g}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7584e716c4c2c09c897f4344f185761349b8f211) |
Original (outermost) function
|
![{\displaystyle h(x)=x^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6b0f1d2ff490196a7920989fd59f70fdf9464519) |
Define as innermost function
|
![{\displaystyle g(x)=\sin(h)=\sin(x^{2})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/65dfe843b2b9b4e2dd4be70e72f8603897ed7692) |
as middle function
|
![{\displaystyle {\frac {df}{dx}}={\frac {df}{dg}}\cdot {\frac {dg}{dh}}\cdot {\frac {dh}{dx}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8f7d8e5c39b2d8f42e30cbacf8fac7dfb6470535) |
Express chain rule applicable here
|
![{\displaystyle {\frac {df}{dg}}=e^{g}=e^{\sin(x^{2})}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c02a30a83ded08c572058b05eed53b39cc53c430) |
Differentiate f(g)[2]
|
![{\displaystyle {\frac {dg}{dh}}=\cos(h)=\cos(x^{2})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f2d091d150edea572879743c73cf9c50b43cb3d1) |
Differentiate
|
![{\displaystyle {\frac {dh}{dx}}=2x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b80bab28330caf44c5e5d8761a88482818d10371) |
Differentiate
|
![{\displaystyle {\frac {d}{dx}}e^{\sin(x^{2})}=e^{\sin(x^{2})}\cdot \cos(x^{2})\cdot 2x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/426bdb6eea629cb22427a967beab97ce1d1e7252) |
Substitute into chain rule.
|
Proof of the chain rule
Suppose
is a function of
which is a function of
(it is assumed that
is differentiable at
and
, and
is differentiable at
.
To prove the chain rule we use the definition of the derivative.
![{\displaystyle {\frac {dy}{dx}}=\lim _{\Delta x\to 0}{\frac {\Delta y}{\Delta x}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/752f69b917ae48b7f858326543a78134d7ace8ae)
We now multiply
by
and perform some algebraic manipulation.
![{\displaystyle \lim _{\Delta x\to 0}{\frac {\Delta y}{\Delta x}}=\lim _{\Delta x\to 0}{\frac {\Delta y}{\Delta u}}\cdot {\frac {\Delta u}{\Delta x}}=\lim _{\Delta x\to 0}{\frac {\Delta y}{\Delta u}}\cdot \lim _{\Delta x\to 0}{\frac {\Delta u}{\Delta x}}=\lim _{\Delta x\to 0}{\frac {\Delta y}{\Delta u}}\cdot {\frac {du}{dx}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6ee2f47c2d7cd214459388eb137e459972f3dfd9)
Note that as
approaches
,
also approaches
. So taking the limit as of a function as
approaches
is the same as taking its limit as
approaches
. Thus
![{\displaystyle \lim _{\Delta x\to 0}{\frac {\Delta y}{\Delta u}}=\lim _{\Delta u\to 0}{\frac {\Delta y}{\Delta u}}={\frac {dy}{du}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c275bc082b7bf3386d36dc143ff2602f37aa89df)
So we have
![{\displaystyle {\frac {dy}{dx}}={\frac {dy}{du}}\cdot {\frac {du}{dx}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/955d845cb30bede7b50f3b9bef5e07e613e4373f)
Resources
Licensing
Content obtained and/or adapted from:
↑ http://www.math.brown.edu/help/derivtips.html
↑ The derivative of
is
; see [[../Derivatives of Exponential and Logarithm Functions]].