Difference between revisions of "Chain Rule"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
 
Line 14: Line 14:
 
|}
 
|}
  
The method is called the "chain rule" because it can be applied sequentially to as many functions as are nested inside one another. <ref>http://www.math.brown.edu/help/derivtips.html</ref> For example, if <math>f</math> is a function of <math>g</math> which is in turn a function of <math>h</math> , which is in turn a function of <math>x</math> , that is
+
The method is called the "chain rule" because it can be applied sequentially to as many functions as are nested inside one another. For example, if <math>f</math> is a function of <math>g</math> which is in turn a function of <math>h</math> , which is in turn a function of <math>x</math> , that is
 
:<math>f\bigl(g(h(x))\bigr)</math>  
 
:<math>f\bigl(g(h(x))\bigr)</math>  
 
the derivative of <math>f</math> with respect to <math>x</math> is given by  
 
the derivative of <math>f</math> with respect to <math>x</math> is given by  
Line 111: Line 111:
 
| <math>\frac{df}{dx}=\frac{df}{dg}\cdot\frac{dg}{dh}\cdot\frac{dh}{dx}</math> || Express chain rule applicable here
 
| <math>\frac{df}{dx}=\frac{df}{dg}\cdot\frac{dg}{dh}\cdot\frac{dh}{dx}</math> || Express chain rule applicable here
 
|-
 
|-
| <math>\frac{df}{dg}=e^g=e^{\sin(x^2)}</math> || Differentiate f(g)<ref>The derivative of <math>e^x</math> is <math>e^x</math> ; see [[../Derivatives of Exponential and Logarithm Functions]].</ref>
+
| <math>\frac{df}{dg}=e^g=e^{\sin(x^2)}</math> || Differentiate f(g)
 
|-
 
|-
 
| <math>\frac{dg}{dh}=\cos(h)=\cos(x^2)</math> || Differentiate <math>g(h)</math>
 
| <math>\frac{dg}{dh}=\cos(h)=\cos(x^2)</math> || Differentiate <math>g(h)</math>

Latest revision as of 15:38, 15 January 2022

The chain rule is a method to compute the derivative of the functional composition of two or more functions.

If a function depends on a variable , which in turn depends on another variable , that is , then the rate of change of with respect to can be computed as the rate of change of with respect to multiplied by the rate of change of with respect to .

Chain Rule

If a function is composed to two differentiable functions and , so that , then is differentiable and,

The method is called the "chain rule" because it can be applied sequentially to as many functions as are nested inside one another. For example, if is a function of which is in turn a function of , which is in turn a function of , that is

the derivative of with respect to is given by

and so on.

A useful mnemonic is to think of the differentials as individual entities that can be canceled algebraically, such as

However, keep in mind that this trick comes about through a clever choice of notation rather than through actual algebraic cancellation.

The chain rule has broad applications in physics, chemistry, and engineering, as well as being used to study related rates in many disciplines. The chain rule can also be generalized to multiple variables in cases where the nested functions depend on more than one variable.

Examples

Example I

Suppose that a mountain climber ascends at a rate of . The temperature is lower at higher elevations; suppose the rate by which it decreases is per kilometer. To calculate the decrease in air temperature per hour that the climber experiences, one multiplies by , to obtain . This calculation is a typical chain rule application.

Example II

Consider the function . It follows from the chain rule that

Function to differentiate
Define as inside function
Express in terms of
Express chain rule applicable here
Substitute in and
Compute derivatives with power rule
Substitute back in terms of
Simplify.

Example III

In order to differentiate the trigonometric function

one can write:

Function to differentiate
Define as inside function
Express in terms of
Express chain rule applicable here
Substitute in and
Evaluate derivatives
Substitute in terms of .

Example IV: absolute value

The chain rule can be used to differentiate , the absolute value function:

Function to differentiate
Equivalent function
Define as inside function
Express in terms of
Express chain rule applicable here
Substitute in and
Compute derivatives with power rule
Substitute Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u(x)} back in terms of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{df}{dx}=\frac{x}{\sqrt{x^2}}} Simplify
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{df}{dx}=\frac{x}{|x|}} Express Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{x^2}} as absolute value.

Example V: three nested functions

The method is called the "chain rule" because it can be applied sequentially to as many functions as are nested inside one another. For example, if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f\bigl(g(h(x))\bigr)=e^{\sin(x^2)}} , sequential application of the chain rule yields the derivative as follows (we make use of the fact that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}e^x=e^x} , which will be proved in a later section):

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=e^{\sin(x^2)}=e^g} Original (outermost) function
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(x)=x^2} Define Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(x)} as innermost function
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)=\sin(h)=\sin(x^2)} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(h)=sin(h)} as middle function
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{df}{dx}=\frac{df}{dg}\cdot\frac{dg}{dh}\cdot\frac{dh}{dx}} Express chain rule applicable here
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{df}{dg}=e^g=e^{\sin(x^2)}} Differentiate f(g)
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dg}{dh}=\cos(h)=\cos(x^2)} Differentiate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(h)}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dh}{dx}=2x} Differentiate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(x)}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}e^{\sin(x^2)}= e^{\sin(x^2)}\cdot\cos(x^2)\cdot 2x} Substitute into chain rule.

Proof of the chain rule

Suppose Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} is a function of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} which is a function of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} (it is assumed that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} is differentiable at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} , and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} is differentiable at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} . To prove the chain rule we use the definition of the derivative.

We now multiply Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\Delta y}{\Delta x}} by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\Delta u}{\Delta u}} and perform some algebraic manipulation.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{\Delta x\to0}\frac{\Delta y}{\Delta x}=\lim_{\Delta x\to0}\frac{\Delta y}{\Delta u}\cdot\frac{\Delta u}{\Delta x}=\lim_{\Delta x\to0}\frac{\Delta y}{\Delta u}\cdot\lim_{\Delta x\to0}\frac{\Delta u}{\Delta x}=\lim_{\Delta x\to0}\frac{\Delta y}{\Delta u}\cdot\frac{du}{dx}}

Note that as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta x} approaches Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta u} also approaches Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0} . So taking the limit as of a function as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta x} approaches Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0} is the same as taking its limit as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta u} approaches Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0} . Thus

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{\Delta x\to0}\frac{\Delta y}{\Delta u}=\lim_{\Delta u\to0}\frac{\Delta y}{\Delta u}=\frac{dy}{du}}

So we have

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dx}}


Resources

Licensing

Content obtained and/or adapted from: