Difference between revisions of "MAT2233"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
(Began table of topics)
 
(→‎Topics List: Complete first version of table)
Line 13: Line 13:
 
||
 
||
 
          
 
          
[[Limit_of_a_function|Systems of Linear Equations]]  
+
[[Systems of Linear Equations]]  
  
 
||
 
||
  
* Algebraic operations on equations
+
* Adding and subtracting equations
* Basic matrices
+
* Solving an equation for a specifed variable
 +
* Equation for a line
  
 
||
 
||
  
* Systems of Linear Equations
+
 
* Row Reduction and Echelon Forms
+
* Matrices, vectors
 +
* Gauss-Jordan elimination
 +
* Rank of a matrix
 +
* Matrix addition
 +
* The product Ax
 +
* Inner product
 +
* Linear Combinations
  
  
Line 38: Line 45:
 
    
 
    
  
[[Linear_Transformations|Linear Transformations]]  
+
[[Linear Transformations]]  
  
 
||
 
||
Line 49: Line 56:
 
||
 
||
  
 
+
*
* Vector Equations
+
* Linear transformations and their properties
* The Matrix Equation Ax = b
+
* Geometry of Linear Transformations (rotations, scalings and projections)
* Solution Sets of Linear Systems
+
* Matrix Products
 +
* The Inverses of a linear transform
  
  
Line 58: Line 66:
  
  
|Week 2/3
+
|Week 5/6
  
 
||
 
||
Line 66: Line 74:
 
||
 
||
 
    
 
    
[[|]]  
+
[[Bases and Linear Independence]]  
 +
 
 +
||
 +
 
 +
* Linear Combinations
 +
* Dimension in R<sup>n</sup>
 +
* Image and kernel of a function
 +
 
 +
||
 +
 
 +
Image and Kernel of a linear transformation
 +
Span of a vector set
 +
Subspace of R<sup>n</sup>
 +
Linear independence and basis
 +
Dimension
 +
Rank-nullity Theorem
 +
 
 +
|-
 +
 
 +
 
 +
|Week&nbsp;7/8 
 +
 
 +
||
 +
 
 +
<div style="text-align: center;"> </div>
 +
 
 +
||
  
 +
 
 +
[[Similar Matrices and Coordinates]]
  
 
||
 
||
  
 +
* Conics (ellipses in particular)
 +
* Equivalence Relations
  
 
||
 
||
  
 +
* Coordinates in a subspace of Rn
 +
* Similar matrices
 +
* Diagonal matrices
 +
 +
||
  
  
Line 79: Line 122:
  
  
|Week&nbsp;
+
|Week&nbsp;9/10
  
 
||
 
||
Line 86: Line 129:
  
 
||
 
||
 +
 
    
 
    
[[]]  
+
[[Orthogonality]]  
  
 
||
 
||
  
 +
* Parallel and perpendicular lines
 +
* Absolute value function
 +
* Basic trigonometric function
 +
* Properties of inner products
  
 +
||
 +
 +
* Perpendicular vectors
 +
* Magnitude of vectors
 +
* Transpose of a Matrix
 +
* Orthonormal vectors
 +
* Orthogonal Projection (x = xjj + x?)
 +
* Orthonormal Bases
 +
* Gram-Schmidt process
 +
* The Least Squares solution
  
 
||
 
||
 +
 +
 +
|-
  
  
  
 +
|Week&nbsp;11/12
 +
 +
||
 +
 +
<div style="text-align: center;"> </div>
 +
 +
||
 +
 +
 
 +
[[Determinants]]
 +
 +
||
 +
 +
* Summation notation
 +
* Sgn function
 +
 +
||
 +
 +
* Properties of Determinants
 +
* Row operations and determinants
 +
* Invertibility based on determinant
 +
* Geometric Interpretation of the Determinant
 +
* Cramer's rule
  
 
||
 
||
Line 102: Line 186:
  
 
|-
 
|-
 +
 +
 +
|Week&nbsp;13/14
 +
 +
||
 +
 +
<div style="text-align: center;"> </div>
 +
 +
||
 +
 +
 
 +
[[Eigenvalues and Eigenvectors]]
 +
 +
||
 +
 +
* Finding real roots of a polynomial
 +
* Finding the kernel of a function
 +
 +
||
 +
 +
* Diagonalization
 +
* Finding eigenvalues
 +
* Finding eigenvectors
 +
* Geometric and algebraic multiplicity
 +
* Spectral Theorem
 +
 +
||

Revision as of 14:10, 15 June 2020

Topics List

Date Sections Topics Prerequisite Skills Student Learning Outcomes
Week 1/2
1.1 and 1.2

Systems of Linear Equations

  • Adding and subtracting equations
  • Solving an equation for a specifed variable
  • Equation for a line


  • Matrices, vectors
  • Gauss-Jordan elimination
  • Rank of a matrix
  • Matrix addition
  • The product Ax
  • Inner product
  • Linear Combinations


Week 3/4
1.3, 1.4 and 1.5


Linear Transformations

  • Basics of functions
  • Inverse functions and the identity function
  • Vectors and the Inner product


  • Linear transformations and their properties
  • Geometry of Linear Transformations (rotations, scalings and projections)
  • Matrix Products
  • The Inverses of a linear transform


Week 5/6
2.4

Bases and Linear Independence

  • Linear Combinations
  • Dimension in Rn
  • Image and kernel of a function

Image and Kernel of a linear transformation Span of a vector set Subspace of Rn Linear independence and basis Dimension Rank-nullity Theorem

Week 7/8


Similar Matrices and Coordinates

  • Conics (ellipses in particular)
  • Equivalence Relations
  • Coordinates in a subspace of Rn
  • Similar matrices
  • Diagonal matrices


Week 9/10


Orthogonality

  • Parallel and perpendicular lines
  • Absolute value function
  • Basic trigonometric function
  • Properties of inner products
  • Perpendicular vectors
  • Magnitude of vectors
  • Transpose of a Matrix
  • Orthonormal vectors
  • Orthogonal Projection (x = xjj + x?)
  • Orthonormal Bases
  • Gram-Schmidt process
  • The Least Squares solution


Week 11/12


Determinants

  • Summation notation
  • Sgn function
  • Properties of Determinants
  • Row operations and determinants
  • Invertibility based on determinant
  • Geometric Interpretation of the Determinant
  • Cramer's rule


Week 13/14


Eigenvalues and Eigenvectors

  • Finding real roots of a polynomial
  • Finding the kernel of a function
  • Diagonalization
  • Finding eigenvalues
  • Finding eigenvectors
  • Geometric and algebraic multiplicity
  • Spectral Theorem