Difference between revisions of "Logistic growth and decay models"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
Line 13: Line 13:
  
 
==Resources==
 
==Resources==
 +
* [https://en.wikipedia.org/wiki/Logistic_function Logistic Function], Wikipedia
 
* [https://openstax.org/books/calculus-volume-2/pages/4-4-the-logistic-equation The Logistic Equation], OpenStax Calculus Volume 2
 
* [https://openstax.org/books/calculus-volume-2/pages/4-4-the-logistic-equation The Logistic Equation], OpenStax Calculus Volume 2
 
* [https://mathresearch.utsa.edu/wikiFiles/MAT1093/Exponential%20growth%20and%20decay%20models/Esparza%201093%20Notes%207.6.pdf Logistic growth and decay models]. Written notes created by Professor Esparza, UTSA.
 
* [https://mathresearch.utsa.edu/wikiFiles/MAT1093/Exponential%20growth%20and%20decay%20models/Esparza%201093%20Notes%207.6.pdf Logistic growth and decay models]. Written notes created by Professor Esparza, UTSA.
 
* [https://mathresearch.utsa.edu/wikiFiles/MAT1093/Exponential%20growth%20and%20decay%20models/Esparza%201093%20Notes%207.6B.pdf Logistic growth and decay models Continued]. Written notes created by Professor Esparza, UTSA.
 
* [https://mathresearch.utsa.edu/wikiFiles/MAT1093/Exponential%20growth%20and%20decay%20models/Esparza%201093%20Notes%207.6B.pdf Logistic growth and decay models Continued]. Written notes created by Professor Esparza, UTSA.

Revision as of 09:46, 10 October 2021

Standard logistic sigmoid function where

A logistic function or logistic curve is a common S-shaped curve sigmoid curve with equation

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \frac{L}{1 + e^{-k(x-x_0)}},}

where

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_0} , the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} value of the sigmoid's midpoint;
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L} , the curve's maximum value;
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} , the logistic growth rate or steepness of the curve.

For values of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} in the domain of real numbers from Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\infty} to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle +\infty} , the S-curve shown on the right is obtained, with the graph of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} approaching Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L} as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} approaches Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle +\infty} and approaching zero as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} approaches Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\infty} .

Resources