Difference between revisions of "Derivatives of Inverse Functions"
Line 1: | Line 1: | ||
+ | [[File:Umkehrregel 2.png|thumb|right|250px|Rule:<br><math>{\color{CornflowerBlue}{f'}}(x) = \frac{1}{{\color{Salmon}{(f^{-1})'}}({\color{Blue}{f}}(x))}</math><br><br>Example for arbitrary <math>x_0 \approx 5.8</math>:<br><math>{\color{CornflowerBlue}{f'}}(x_0) = \frac{1}{4}</math><br><math>{\color{Salmon}{(f^{-1})'}}({\color{Blue}{f}}(x_0)) = 4~</math>]] | ||
+ | |||
In mathematics, the '''inverse''' of a function <math>y = f(x)</math> is a function that, in some fashion, "undoes" the effect of <math>f</math>. The inverse of <math>f</math> is denoted as <math>f^{-1}</math>, where <math>f^{-1}(y) = x</math> if and only if <math>f(x) = y</math>. | In mathematics, the '''inverse''' of a function <math>y = f(x)</math> is a function that, in some fashion, "undoes" the effect of <math>f</math>. The inverse of <math>f</math> is denoted as <math>f^{-1}</math>, where <math>f^{-1}(y) = x</math> if and only if <math>f(x) = y</math>. | ||
Revision as of 09:29, 28 October 2021
In mathematics, the inverse of a function is a function that, in some fashion, "undoes" the effect of . The inverse of is denoted as , where if and only if .
Their two derivatives, assuming they exist, are reciprocal, as the Leibniz notation suggests; that is:
This relation is obtained by differentiating the equation in terms of and applying the chain rule, yielding that:
considering that the derivative of with respect to is 1.
Writing explicitly the dependence of on , and the point at which the differentiation takes place, the formula for the derivative of the inverse becomes (in Lagrange's notation):
- .
This formula holds in general whenever is continuous and injective on an interval , with being differentiable at () and where . The same formula is also equivalent to the expression
where denotes the unary derivative operator (on the space of functions) and denotes function composition.
Geometrically, a function and inverse function have graphs that are reflections, in the line . This reflection operation turns the gradient of any line into its reciprocal.
Assuming that has an inverse in a neighbourhood of and that its derivative at that point is non-zero, its inverse is guaranteed to be differentiable at and have a derivative given by the above formula.
Resources
- Derivatives of Inverse Functions PowerPoint file created by Dr. Sara Shirinkam, UTSA.
- Derivatives of Inverse Function, Mathematics LibreTexts