Compound Interest
Compound interest includes interest earned on the interest that was previously accumulated.
Compare, for example, a bond paying 6 percent semiannually (that is, coupons of 3 percent twice a year) with a certificate of deposit (GIC) that pays 6 percent interest once a year. The total interest payment is $6 per $100 par value in both cases, but the holder of the semiannual bond receives half the $6 per year after only 6 months (time preference), and so has the opportunity to reinvest the first $3 coupon payment after the first 6 months, and earn additional interest.
For example, suppose an investor buys $10,000 par value of a US dollar bond, which pays coupons twice a year, and that the bond's simple annual coupon rate is 6 percent per year. This means that every 6 months, the issuer pays the holder of the bond a coupon of 3 dollars per 100 dollars par value. At the end of 6 months, the issuer pays the holder:
Assuming the market price of the bond is 100, so it is trading at par value, suppose further that the holder immediately reinvests the coupon by spending it on another $300 par value of the bond. In total, the investor therefore now holds:
and so earns a coupon at the end of the next 6 months of:
Assuming the bond remains priced at par, the investor accumulates at the end of a full 12 months a total value of:
and the investor earned in total:
The formula for the annual equivalent compound interest rate is:
where
- r is the simple annual rate of interest
- n is the frequency of applying interest
For example, in the case of a 6% simple annual rate, the annual equivalent compound rate is:
Resources
- Simple and Compound Interest, Book Chapter
- Guided Notes