Rules for Differentiation and Tangent Planes
We will now look at a bunch of rules for differentiating vector-valued function, all of which are analogous to that of differentiating real-valued functions. We will not prove all parts of the following theorem, but the reader is encouraged to attempt the proofs.
- Theorem 1: Let and be vector-valued functions that are differentiable for in the interval , let be a scalar, and let be a real-valued function that is differentiable on . Then:
- a) (Sum Rule).
- b) (Difference Rule).
- c) (Scalar Multiple Rule).
- d) (Product Rule for Real-Valued and Vector-Valued Functions).
- e) (Dot Product Rule).
- f) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\vec{u} \times \vec{v})' = \vec{u'}(t) \times \vec{v}(t) + \vec{u}(t) \times \vec{v'}(t)} (Cross Product Rule).
- g) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{u}(f(t)) = f'(t) \vec{u'}(f(t))} (Chain Rule).
- Proof of a)
- Proof of c)
- Proof of d)
Theorem 2: Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{r}(t) = (x(t), y(t), z(t))} be a vector-valued function that traces the curve Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C} for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t \in I} . If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \| \vec{r}(t) \| = c} where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} is a constant, then for all Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t \in I} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{r}(t) \perp \vec{r'}(t)} .
- Proof: We note that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{r}(t) \cdot \vec{r}(t) = \| \vec{r}(t) \|^2 = c^2} . Taking the derivative of both sides of this equation and applying the dot product rule, we get that:
- Therefore Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{r}(t) \perp \vec{r'}(t)} . Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \blacksquare}
Licensing
Content obtained and/or adapted from:
- Derivative Rules for Vector-Valued Functions, mathonline.wikidot.com under a CC BY-SA license