(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
We will now look at a bunch of rules for differentiating vector-valued function, all of which are analogous to that of differentiating real-valued functions. We will not prove all parts of the following theorem, but the reader is encouraged to attempt the proofs.
- Theorem 1: Let
and
be vector-valued functions that are differentiable for
in the interval
, let
be a scalar, and let
be a real-valued function that is differentiable on
. Then:
- a)
(Sum Rule).
- b)
(Difference Rule).
- c)
(Scalar Multiple Rule).
- d)
(Product Rule for Real-Valued and Vector-Valued Functions).
- e)
(Dot Product Rule).
- f)
(Cross Product Rule).
- g)
(Chain Rule).
![{\displaystyle {\begin{aligned}\quad ({\vec {u}}(t)+{\vec {v}}(t))'=\lim _{h\to 0}{\frac {[{\vec {u}}(t+h)+{\vec {v}}(t+h)]-[{\vec {u}}(t)+{\vec {v}}(t)]}{h}}\\\quad ({\vec {u}}(t)+{\vec {v}}(t))'=\lim _{h\to 0}{\frac {[{\vec {u}}(t+h)-{\vec {u}}(t)]+[{\vec {v}}(t+h)-{\vec {v}}(t)]}{h}}\\\quad ({\vec {u}}(t)+{\vec {v}}(t))'=\lim _{h\to 0}{\frac {{\vec {u}}(t+h)-{\vec {u}}(t)}{h}}+\lim _{h\to 0}{\frac {{\vec {v}}(t+h)-{\vec {v}}(t)}{h}}\\\quad ({\vec {u}}(t)+{\vec {v}}(t))'={\vec {u'}}(t)+{\vec {v'}}(t)\quad \blacksquare \end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/671cdfbe0477b2fd1d15908c2757dfff4924c02f)

![{\displaystyle {\begin{aligned}\quad (f(t){\vec {u}}(t))'=\lim _{h\to 0}{\frac {f(t+h){\vec {u}}(t+h)-f(t){\vec {u}}(t)}{h}}\\\quad (f(t){\vec {u}}(t))'=\lim _{h\to 0}{\frac {f(t+h){\vec {u}}(t+h)-f(t+h){\vec {u}}(t)+f(t+h){\vec {u}}(t)-f(t){\vec {u}}(t)}{h}}\\\quad (f(t){\vec {u}}(t))'=\lim _{h\to 0}{\frac {f(t+h)[{\vec {u}}(t+h)-{\vec {u}}(t)]+{\vec {u}}(t)[f(t+h)-f(t)]}{h}}\\\quad (f(t){\vec {u}}(t))'=\lim _{h\to 0}{\frac {f(t+h)[{\vec {u}}(t+h)-{\vec {u}}(t)]}{h}}+\lim _{h\to 0}{\frac {{\vec {u}}(t)[f(t+h)-f(t)]}{h}}\\\quad (f(t){\vec {u}}(t))'=\lim _{h\to 0}f(t+h)\left({\frac {{\vec {u}}(t+h)-{\vec {u}}(t)}{h}}\right)+\lim _{h\to 0}{\vec {u}}(t)\left({\frac {[f(t+h)-f(t)]}{h}}\right)\\\quad (f(t){\vec {u}}(t))'=f(t){\vec {u'}}(t)+{\vec {u}}f'(t)\\\quad (f(t){\vec {u}}(t))'=f'(t){\vec {u}}+f(t){\vec {u'}}(t)\quad \blacksquare \end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ab2a292b4309306200e127393cb020a4693544ad)
Theorem 2: Let
be a vector-valued function that traces the curve
for
. If
where
is a constant, then for all
,
.
- Proof: We note that
. Taking the derivative of both sides of this equation and applying the dot product rule, we get that:

- Therefore
. 
Licensing
Content obtained and/or adapted from: