Tangent
The tangent of an angle is equivalent to the sine of that angle divided by the cosine of that angle.
The range of the function is . Note that since , is not defined whenever ; that is, when for any integer k. We can see that there is a vertical asymptote at each of these values in the graph of .
Cotangent
The cotangent of an angle is the reciprocal of its tangent.
The range of the function is , the same as the range of its reciprocal . , so is not defined whenever ; that is, when for any integer k. We can see that there is a vertical asymptote at each of these values in the graph of .
Secant
The secant of an angle is the reciprocal of its cosine.
Like , is an even function; that is, . The range of the function is , so the range of is , which is all possible outputs of 1/x for . Since is not defined, is not defined whenever ; that is, when for any integer k. We can see that there is a vertical asymptote at each of these values in the graph of .
Cosecant
The cosecant of an angle is the reciprocal of its sine.
Like , is an odd function; that is, . The range of the function is the same as the range for (). is not defined whenever ; that is, when for any integer k. We can see that there is a vertical asymptote at each of these values in the graph of .
Resources
Licensing
Content obtained and/or adapted from: