Linear Tranformations

From Department of Mathematics at UTSA
Jump to navigation Jump to search

Linear Transformations

Definition: A transformation Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T: \mathbb{R}^n \to \mathbb{R}^m} (or operator if ) is defined to be linear if the image is comprised of only linear equations for every mapping , that is . For any vectors and any scalar a transformation is linear if and .

Let's first look at an example of a linear transformation. Consider the following linear transformation defined by the following equations:

We note that the equations forming the image, that is , , and are all linear, so this transformation is also considered linear and that . For example, if we take the vector and apply our linear transformation, we obtain a resultant vector , and we say that is the image of under the linear transformation . In general, a linear transformation is generally defined by the following equations:

In matrix notation we can represent this transformation as . is called the standard matrix for the linear transformation , though sometimes we use the notation instead. Either way, the standard matrix is created from the coefficients from the system of linear equations defining the image of .

This linear transformation is defined by the standard matrix , so we say that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} is multiplication by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} and often denote it with the notation Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_A (x) = Ax} .

Either way, these transformations will geometrically transform some vector or point in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}^n} to some other vector or point in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}^m} .

Properties of Linear Transformations

We've already stated the following two properties in the definition of a linear transformation, but now we will prove their existence.

Property 1: If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T: \mathbb{R}^n \to \mathbb{R}^m} is a linear transformation, then for any vectors Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{u}, \vec{v} \in \mathbb{R}^n} it follows that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})} .
  • Proof: Suppose that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} is a linear transformation and is multiplication by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} . Thus it follows that:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} T(\vec{u} + \vec{v}) = A(u + v) \\ T(\vec{u} + \vec{v}) = Au + Av \\ T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v}) \\ \blacksquare \end{align}}
Property 2: If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T: \mathbb{R}^n \to \mathbb{R}^m} is a linear transformation, then for any vector Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{u} \in \mathbb{R}^n} and any scalar Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} it follows that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T(k\vec{u}) + kT(\vec{u})} .
  • Proof: Suppose that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} is a linear transformation and is multiplication by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} . Thus it follows that:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} T(k\vec{u}) = A(ku) \\ T(k\vec{u}) = k(Au) \\ T(k\vec{u}) = kT(\vec{u}) \\ \blacksquare \end{align}}


Licensing

Content obtained and/or adapted from: