Difference between revisions of "The Additivity Theorem"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
Line 10: Line 10:
 
</ul>
 
</ul>
 
<ul>
 
<ul>
<li>Since <span class="math-inline"><math>\int_a^c f(x) \; d \alpha (x) = A</math></span> we have that for <span class="math-inline"><math>\epsilon_1 = \frac{\epsilon}{2} > 0</math></span> there exists a partition <span class="math-inline"><math>P_{\epsilon_1} \in \mathscr{P}[a, c]</math></span> such that for all partitions <span class="math-inline"><math>P' \in \mathscr{P}[a, c]</math></span> finer than <span class="math-inline"><math>P_{\epsilon_1}</math></span>, (<span class="math-inline"><math>P_{\epsilon_1} \subseteq P'</math></span>) and for any choice of <span class="math-inline"><math>t_k</math></span>'s in each <span class="math-inline"><math>k^{\mathrm{th}}</math></span> subinterval we have that:</li>
+
<li>Since <span class="math-inline"><math>\int_a^c f(x) \; d \alpha (x) = A</math></span> we have that for <span class="math-inline"><math>\epsilon_1 = \frac{\epsilon}{2} > 0</math></span> there exists a partition <span class="math-inline"><math>P_{\epsilon_1} \in \mathcal{P}[a, c]</math></span> such that for all partitions <span class="math-inline"><math>P' \in \mathcal{P}[a, c]</math></span> finer than <span class="math-inline"><math>P_{\epsilon_1}</math></span>, (<span class="math-inline"><math>P_{\epsilon_1} \subseteq P'</math></span>) and for any choice of <span class="math-inline"><math>t_k</math></span>'s in each <span class="math-inline"><math>k^{\mathrm{th}}</math></span> subinterval we have that:</li>
 
</ul>
 
</ul>
 
<div style="text-align: center;"><math>\begin{align} \quad \mid S(P', f, \alpha) - A \mid < \epsilon_1 = \frac{\epsilon}{2} \quad (*) \end{align}</math></div>
 
<div style="text-align: center;"><math>\begin{align} \quad \mid S(P', f, \alpha) - A \mid < \epsilon_1 = \frac{\epsilon}{2} \quad (*) \end{align}</math></div>
 
<ul>
 
<ul>
<li>Similarly, since <span class="math-inline"><math>\int_c^b f(x) \; d \alpha (x) = B</math></span> we have that for <span class="math-inline"><math>\epsilon_2 = \frac{\epsilon}{2} > 0</math></span> there exists a partition <span class="math-inline"><math>P_{\epsilon_2} \in \mathscr{P}[c, b]</math></span> such that for all partitions <span class="math-inline"><math>P'' \in \mathscr{P}[c, b]</math></span> finer than <span class="math-inline"><math>P_{\epsilon_2}</math></span>, <span class="math-inline"><math>(P_{\epsilon_2} \subseteq P''</math></span>) and for any choice of <span class="math-inline"><math>u_k</math></span>'s in each <span class="math-inline"><math>k^{\mathrm{th}}</math></span> subinterval we have that:</li>
+
<li>Similarly, since <span class="math-inline"><math>\int_c^b f(x) \; d \alpha (x) = B</math></span> we have that for <span class="math-inline"><math>\epsilon_2 = \frac{\epsilon}{2} > 0</math></span> there exists a partition <span class="math-inline"><math>P_{\epsilon_2} \in \mathcal{P}[c, b]</math></span> such that for all partitions <span class="math-inline"><math>P'' \in \mathcal{P}[c, b]</math></span> finer than <span class="math-inline"><math>P_{\epsilon_2}</math></span>, <span class="math-inline"><math>(P_{\epsilon_2} \subseteq P''</math></span>) and for any choice of <span class="math-inline"><math>u_k</math></span>'s in each <span class="math-inline"><math>k^{\mathrm{th}}</math></span> subinterval we have that:</li>
 
</ul>
 
</ul>
 
<div style="text-align: center;"><math>\begin{align} \quad \mid S(P'', f, \alpha) - B \mid < \epsilon_2 = \frac{\epsilon}{2} \quad (**) \end{align}</math></div>
 
<div style="text-align: center;"><math>\begin{align} \quad \mid S(P'', f, \alpha) - B \mid < \epsilon_2 = \frac{\epsilon}{2} \quad (**) \end{align}</math></div>
 
<ul>
 
<ul>
<li>Let <span class="math-inline"><math>P_{\epsilon} = P_{\epsilon_1} \cup P_{\epsilon_2}</math></span>. Then <span class="math-inline"><math>P_{\epsilon}</math></span> is a partition of <span class="math-inline"><math>[a, b]</math></span> and for all partitions <span class="math-inline"><math>P \in \mathscr{P}[a, b]</math></span> finer than <span class="math-inline"><math>P_{\epsilon}</math></span>, (<span class="math-inline"><math>P_{\epsilon} \subseteq P</math></span>) we must have that <span class="math-inline"><math>(*)</math></span> and <span class="math-inline"><math>(**)</math></span> hold. Then for any choice of <span class="math-inline"><math>v_k</math></span>'s in each <span class="math-inline"><math>k^{\mathrm{th}}</math></span> subinterval we have that:</li>
+
<li>Let <span class="math-inline"><math>P_{\epsilon} = P_{\epsilon_1} \cup P_{\epsilon_2}</math></span>. Then <span class="math-inline"><math>P_{\epsilon}</math></span> is a partition of <span class="math-inline"><math>[a, b]</math></span> and for all partitions <span class="math-inline"><math>P \in \mathcal{P}[a, b]</math></span> finer than <span class="math-inline"><math>P_{\epsilon}</math></span>, (<span class="math-inline"><math>P_{\epsilon} \subseteq P</math></span>) we must have that <span class="math-inline"><math>(*)</math></span> and <span class="math-inline"><math>(**)</math></span> hold. Then for any choice of <span class="math-inline"><math>v_k</math></span>'s in each <span class="math-inline"><math>k^{\mathrm{th}}</math></span> subinterval we have that:</li>
 
</ul>
 
</ul>
 
<div style="text-align: center;"><math>\begin{align} \quad \mid S(P, f, \alpha) - (A + B) \mid = \mid S(P', f, \alpha) + S(P'', f, \alpha) - (A + B) \mid \leq \mid S(P', f, \alpha - A \mid + \mid S(P'', f, \alpha) - B \mid < \epsilon_1 + \epsilon_2 = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \end{align}</math></div>
 
<div style="text-align: center;"><math>\begin{align} \quad \mid S(P, f, \alpha) - (A + B) \mid = \mid S(P', f, \alpha) + S(P'', f, \alpha) - (A + B) \mid \leq \mid S(P', f, \alpha - A \mid + \mid S(P'', f, \alpha) - B \mid < \epsilon_1 + \epsilon_2 = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \end{align}</math></div>

Revision as of 15:56, 9 November 2021

The Additivity Theorem for Riemann Integrable Functions: Let be a real-valued function on the interval , and let . Then, is Riemann integrable on if and only if it is also Riemann integrable on and . In this case,

  • Proof: Suppose that and for some . Let be given.
    • Since we have that for there exists a partition such that for all partitions finer than , () and for any choice of 's in each subinterval we have that:
    • Similarly, since we have that for there exists a partition such that for all partitions finer than , ) and for any choice of 's in each subinterval we have that:
    • Let . Then is a partition of and for all partitions finer than , () we must have that and hold. Then for any choice of 's in each subinterval we have that:
    • Hence exists and: