Difference between revisions of "The inverse Sine, Cosine and Tangent functions"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
(added The inverse Sine, Cosine and Tangent functions notes by professor Esparza)
 
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
* [https://mathresearch.utsa.edu/wikiFiles/MAT1093/The%20inverse%20Sine,%20Cosine%20and%20Tangent%20functions/ The inverse Sine, Cosine and Tangent functions]. Written notes created by Professor Esparza, UTSA.
+
In mathematics, the '''inverse trigonometric functions''' (occasionally also called '''arcus functions''', '''antitrigonometric functions''' or '''cyclometric functions''' are the inverse functions of the trigonometric functions (with suitably restricted domains). Specifically, they are the inverses of the sine, cosine, tangent (trigonometry)|tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.
 +
 
 +
==Notation==
 +
Several notations for the inverse trigonometric functions exist. The most common convention is to name inverse trigonometric functions using an arc- prefix: {{math|arcsin(''x'')}}, {{math|arccos(''x'')}}, {{math|arctan(''x'')}}, etc. This notation arises from the following geometric relationships: when measuring in radians, an angle of ''θ'' radians will correspond to an arc whose length is ''rθ'', where ''r'' is the radius of the circle. Thus in the unit circle, "the arc whose cosine is ''x''" is the same as "the angle whose cosine is ''x''", because the length of the arc of the circle in radii is the same as the measurement of the angle in radians. In computer programming languages, the inverse trigonometric functions are often called by the abbreviated forms asin, acos, atan.
 +
 
 +
The notations {{math|sin<sup>&minus;1</sup>(''x'')}}, {{math|cos<sup>&minus;1</sup>(''x'')}}, {{math|tan<sup>&minus;1</sup>(''x'')}}, etc., as introduced by John Herschel in 1813, are often used as well in English-language sources—conventions consistent with the notation of an inverse function. This might appear to conflict logically with the common semantics for expressions such as {{math|sin<sup>2</sup>(''x'')}}, which refer to numeric power rather than function composition, and therefore may result in confusion between multiplicative inverse or reciprocal and compositional inverse. The confusion is somewhat mitigated by the fact that each of the reciprocal trigonometric functions has its own name—for example, {{math|(cos(''x''))<sup>&minus;1</sup>}} = {{math|sec(''x'')}}. Nevertheless, certain authors advise against using it for its ambiguity. Another convention used by a few authors is to use an uppercase first letter, along with a {{math|<sup>&minus;1</sup>}} superscript: {{math|Sin<sup>&minus;1</sup>(''x'')}}, {{math|Cos<sup>&minus;1</sup>(''x'')}}, {{math|Tan<sup>&minus;1</sup>(''x'')}}, etc. This potentially avoids confusion with the multiplicative inverse, which should be represented by {{math|sin<sup>&minus;1</sup>(''x'')}}, {{math|cos<sup>&minus;1</sup>(''x'')}}, etc.
 +
 
 +
Since 2009, the ISO 80000-2 standard has specified solely the "arc" prefix for the inverse functions.
 +
 
 +
==Basic concepts==
 +
 
 +
===Principal values===
 +
Since none of the six trigonometric functions are one-to-one, they must be restricted in order to have inverse functions. Therefore, the result ranges of the inverse functions are proper subsets of the domains of the original functions.
 +
 
 +
For example, using function in the sense of multivalued functions, just as the square root function <math>y = \sqrt{x}</math> could be defined from <math>y^2 = x,</math> the function <math>y = \arcsin(x)</math> is defined so that <math>\sin(y) = x.</math> For a given real number <math>x,</math> with <math>-1 \leq x \leq 1,</math> there are multiple (in fact, countably infinite) numbers <math>y</math> such that <math>\sin(y) = x</math>; for example, <math>\sin(0) = 0,</math> but also <math>\sin(\pi) = 0,</math> <math>\sin(2 \pi) = 0,</math> etc. When only one value is desired, the function may be restricted to its principal branch. With this restriction, for each <math>x</math> in the domain, the expression <math>\arcsin(x)</math> will evaluate only to a single value, called its principal value. These properties apply to all the inverse trigonometric functions.
 +
 
 +
The principal inverses are listed in the following table.
 +
 
 +
{| class="wikitable" style="text-align:center"
 +
|-
 +
!Name
 +
!Usual notation
 +
!Definition
 +
!Domain of <math>x</math> for real result
 +
!Range of usual principal value <br /> (radians)
 +
!Range of usual principal value <br /> (degrees)
 +
|-
 +
| '''arcsine''' || <math>y = \arcsin(x)</math> || {{math|1=''x'' = sin(''y'')}} || <math>-1 \leq x \leq 1</math> || <math>- \frac{\pi}{2} \leq y \leq \frac{\pi}{2}</math> || <math>- 90^{\circ} \leq y \leq 90^{\circ}</math>
 +
|-
 +
| '''arccosine''' || <math>y = \arccos(x)</math> || {{math|1=''x'' = cos(''y'')}} || <math>-1 \leq x \leq 1</math> || <math>0 \leq y \leq \pi</math> || <math>0^{\circ} \leq y \leq 180^{\circ}</math>
 +
|-
 +
| '''arctangent''' || <math>y = \arctan(x)</math> || {{math|1=''x'' = tan(''y'')}} || all real numbers || <math>- \frac{\pi}{2} < y < \frac{\pi}{2}</math> || <math>- 90^{\circ} < y < 90^{\circ}</math>
 +
|-
 +
| '''arccotangent''' || <math>y = \arccot(x)</math> || {{math|1=''x'' = cot(''y'')}} || all real numbers
 +
| <math>0 < y < \pi</math> || <math>0^{\circ} < y < 180^{\circ}</math>
 +
|-
 +
| '''arcsecant''' || <math>y = \arcsec(x)</math> || {{math|1=''x'' = sec(''y'')}} || <math>x \leq -1 \text{ or } x \geq 1</math> || <math>0 \leq y < \frac{\pi}{2} \text{ or } \frac{\pi}{2} < y \leq \pi</math> || <math>0^{\circ} \leq y < 90^{\circ} \text{ or } 90^{\circ} < y \leq 180^{\circ}</math>
 +
|-
 +
| '''arccosecant''' || <math>y = \arccsc(x)</math> ||{{math|1=''x'' = csc(''y'')}} || <math>x \leq -1 \text{ or } x \geq 1</math> || <math>- \frac{\pi}{2} \leq y < 0 \text{ or } 0 < y \leq \frac{\pi}{2}</math> || <math>- 90^{\circ} \leq y < 0^{\circ} \text{ or } 0^{\circ} < y \leq 90^{\circ}</math>
 +
|-
 +
|}
 +
(Note: Some authors define the range of arcsecant to be (<math>0 \leq y < \frac{\pi}{2} \text{ or } \pi < y \leq \frac{3 \pi}{2}</math>), because the tangent function is nonnegative on this domain. This makes some computations more consistent. For example, using this range, <math>\tan(\arcsec(x)) = \sqrt{x^2 - 1},</math> whereas with the range (<math>0 \leq y < \frac{\pi}{2} \text{ or } \frac{\pi}{2} < y \leq \pi</math>), we would have to write <math>\tan(\arcsec(x)) = \pm \sqrt{x^2 - 1},</math> since tangent is nonnegative on <math>0 \leq y < \frac{\pi}{2},</math> but nonpositive on <math>\frac{\pi}{2} < y \leq \pi.</math> For a similar reason, the same authors define the range of arccosecant to be <math>- \pi < y \leq - \frac{\pi}{2}</math> or <math>0 < y \leq \frac{\pi}{2}.</math>)
 +
 
 +
If <math>x</math> is allowed to be a complex number, then the range of <math>y</math> applies only to its real part.
 +
 
 +
=== Solutions to elementary trigonometric equations ===
 +
 
 +
Each of the trigonometric functions is periodic in the real part of its argument, running through all its values twice in each interval of <math>2 \pi</math>:
 +
 
 +
* Sine and cosecant begin their period at <math>2 \pi k - \frac{\pi}{2}</math> (where <math>k</math> is an integer), finish it at <math>2 \pi k + \frac{\pi}{2},</math> and then reverse themselves over <math>2 \pi k + \frac{\pi}{2},</math> to <math>2 \pi k + \frac{3\pi}{2}.</math>
 +
* Cosine and secant begin their period at <math>2 \pi k,</math> finish it at <math>2 \pi k + \pi.</math> and then reverse themselves over <math>2 \pi k + \pi</math> to <math>2 \pi k + 2 \pi.</math>
 +
* Tangent begins its period at <math>2 \pi k - \frac{\pi}{2},</math>  finishes it at <math>2 \pi k + \frac{\pi}{2},</math> and then repeats it (forward) over <math>2 \pi k + \frac{\pi}{2}</math> to <math>2 \pi k + \frac{3 \pi}{2}.</math>
 +
* Cotangent begins its period at <math>2 \pi k, </math> finishes it at <math>2 \pi k + \pi,</math> and then repeats it (forward) over <math>2 \pi k + \pi</math> to <math>2 \pi k + 2 \pi.</math>
 +
 
 +
This periodicity is reflected in the general inverses, where <math>k</math> is some integer.
 +
 
 +
For example, if <math>\cos \theta = -1</math> then <math>\theta = \pi + 2 \pi k = -\pi + 2 \pi (1 + k)</math> for some <math>k \in \Z.</math> While if <math>\sin \theta = \pm 1</math> then <math>\theta = \frac{\pi}{2} + \pi k = - \frac{\pi}{2} + \pi (k + 1)</math> for some <math>k \in \Z,</math> where <math>k</math> will be even if <math>\sin \theta = 1</math> and it will be odd if <math>\sin \theta = -1.</math> The equations <math>\sec \theta = -1</math> and <math>\csc \theta = \pm 1</math> have the same solutions as <math>\cos \theta = -1</math> and <math>\sin \theta = \pm 1,</math> respectively. In all equations above except for those just solved (i.e. except for <math>\sin</math>/<math>\csc \theta = \pm 1</math> and <math>\cos</math>/<math>\sec \theta = - 1</math>), the integer <math>k</math> in the solution's formula is uniquely determined by <math>\theta</math> (for fixed <math>r, s, x,</math> and <math>y</math>).
 +
 
 +
;Detailed example and explanation of the "plus or minus" symbol <math>\pm</math>
 +
 
 +
The solutions to <math>\cos \theta = x</math> and <math>\sec \theta = x</math> involve the "plus or minus" symbol <math>\,\pm,\,</math> whose meaning is now clarified. Only the solution to <math>\cos \theta = x</math> will be discussed since the discussion for <math>\sec \theta = x</math> is the same.
 +
We are given <math>x</math> between <math>-1 \leq x \leq 1</math> and we know that there is an angle <math>\theta</math> in some give interval that satisfies <math>\cos \theta = x.</math> We want to find this <math>\theta.</math> The formula for the solution involves:
 +
<math display="block">\pm \arccos x.</math>
 +
If <math>\,\arccos x = 0\,</math> (which only happens when <math>x = 1</math>) then <math>\,+ \arccos x = 0\,</math> and <math>\,- \arccos x = 0\,</math> so either way, <math>\,\pm \arccos x\,</math> can only be equal to <math>0.</math> But if <math>\,\arccos x \neq 0,\,</math> which will now be assumed, then the solution to <math>\cos \theta = x,</math> which is written above as
 +
<math display="block">\,\theta = \pm \arccos x + 2 \pi k\, \quad \text{ for some }k \in \Z</math>
 +
is shorthand for the following statement:
 +
Either
 +
*<math>\,\theta = \arccos x + 2 \pi k\,</math> for some integer <math>k,</math> <br/>or else
 +
*<math>\,\theta = - \arccos x + 2 \pi k\,</math> for some integer <math>k.</math>
 +
Because <math>\,\arccos x \neq 0\,</math> and <math>\,0 < \arccos x \leq \pi\,</math> exactly one of these two equalities can hold. Additional information about <math>\theta</math> is needed to determine which one holds. For example, suppose that <math>x = 0</math> and that all that is known about <math>\theta</math> is that <math>\,- \pi \leq \theta \leq \pi\,</math> (and nothing more is known). Then
 +
<math display="block">\arccos x = \arccos 0 = \frac{\pi}{2}</math>
 +
and moreover, in this particular case <math>k = 0</math> (for both the <math>\,+\,</math> case and the <math>\,-\,</math> case) and so consequently,
 +
<math display="block">\theta ~=~ \pm \arccos x + 2 \pi k ~=~ \pm \left(\frac{\pi}{2}\right) + 2\pi (0) ~=~ \pm \frac{\pi}{2}.</math>
 +
This means that <math>\theta</math> could be either <math>\,\pi/2\,</math> or <math>\,- \pi/2.</math> Without additional information it is not possible to determine which of these values <math>\theta</math> has.
 +
An example of some additional information that could determine the value of <math>\theta</math> would be knowing that the angle is above the <math>x</math>-axis (in which case <math>\theta = \pi/2</math>) or alternatively, knowing that it is below the <math>x</math>-axis (in which case <math>\theta = - \pi/2</math>).
 +
 
 +
;Transforming equations
 +
 
 +
The equations above can be transformed by using the identities
 +
 
 +
{|class="wikitable" style="background-color: #FFFFFF"
 +
<!--
 +
|rowspan="1" colspan="2"! {{diagonal split header|Function|<math>\varphi =</math>}}
 +
!style='border-style: solid solid none solid;'|<math>- \theta</math>
 +
!style='border-style: solid solid none solid;'|<math>\frac{\pi}{2} - \theta</math>
 +
!style='border-style: solid solid none solid;'|<math>\pi - \theta</math>
 +
!style='border-style: solid solid none solid;'|<math>2 \pi - \theta</math>
 +
|-
 +
 
 +
!style='border-style: none solid none solid;'|<math>\scriptstyle|\,\scriptstyle|</math>
 +
!style='border-style: none solid none solid;'|<math>\scriptstyle|\,\scriptstyle|</math>
 +
!style='border-style: none solid none solid;'|<math>\scriptstyle|\,\scriptstyle|</math>
 +
!style='border-style: none solid none solid;'|<math>\scriptstyle|\,\scriptstyle|</math>
 +
|-
 +
 
 +
!style='border-style: none solid solid solid;'|<math>- \theta</math>
 +
!style='border-style: none solid solid solid;'|<math>\frac{\pi}{2} - \theta</math>
 +
!style='border-style: none solid solid solid;'|<math>\pi - \theta</math>
 +
!style='border-style: none solid solid solid;'|<math>2 \pi - \theta</math>
 +
-->
 +
|-
 +
!style='border-style: none none none solid; text-align: right; padding-left: 2em;'|<math>\operatorname{func} \ </math>
 +
!style='border-style: none none none none; text-align: right; padding-left: ;'|<math></math>
 +
!style='border-style: none solid none solid;'|<math>\operatorname{func} (- \theta)</math>
 +
!style='border-style: none solid none solid;'|<math>\operatorname{func} \left(\frac{\pi}{2} - \theta\right)</math>
 +
!style='border-style: none solid none solid;'|<math>\operatorname{func} (\pi - \theta)</math>
 +
!style='border-style: none solid none solid;'|<math>\operatorname{func} (2 \pi - \theta)</math>
 +
|-
 +
!style='border-style: none none solid solid; text-align: center; padding-left: 2em;'|<math>\scriptstyle|\,\scriptstyle|</math>
 +
!style='border-style: none none solid none; text-align: right; padding-left: ;'|
 +
!style='border-style: none solid none solid;'|<math>\scriptstyle|\,\scriptstyle|</math>
 +
!style='border-style: none solid none solid;'|<math>\scriptstyle|\,\scriptstyle|</math>
 +
!style='border-style: none solid none solid;'|<math>\scriptstyle|\,\scriptstyle|</math>
 +
!style='border-style: none solid none solid;'|<math>\scriptstyle|\,\scriptstyle|</math>
 +
|-
 +
!style='border-style: solid none solid solid; text-align: right; padding-left: 2em;'|<math>\sin \ </math>
 +
!style='border-style: solid solid solid none; text-align: right; padding-left: ;'|<math></math>
 +
|style='text-align: right;'|<math>- \sin \theta</math>
 +
|style='text-align: right;'|<math>\cos \theta</math>
 +
|style='text-align: right;'|<math>\sin \theta</math>
 +
|style='text-align: right;'|<math>- \sin \theta</math>
 +
|-
 +
!style='border-style: solid none solid solid; text-align: right; padding-left: 2em;'|<math>\cos \ </math>
 +
!style='border-style: solid solid solid none; text-align: right; padding-left: ;'|<math></math>
 +
|style='text-align: right;'|<math>\cos \theta</math>
 +
|style='text-align: right;'|<math>\sin \theta</math>
 +
|style='text-align: right;'|<math>- \cos \theta</math>
 +
|style='text-align: right;'|<math>\cos \theta</math>
 +
|-
 +
!style='border-style: solid none solid solid; text-align: right; padding-left: 2em;'|<math>\tan \ </math>
 +
!style='border-style: solid solid solid none; text-align: right; padding-left: ;'|<math></math>
 +
|style='text-align: right;'|<math>- \tan \theta</math>
 +
|style='text-align: right;'|<math>\cot \theta</math>
 +
|style='text-align: right;'|<math>- \tan \theta</math>
 +
|style='text-align: right;'|<math>- \tan \theta</math>
 +
|-
 +
!style='border-style: solid none solid solid; text-align: right; padding-left: 2em;'|<math>\csc \ </math>
 +
!style='border-style: solid solid solid none; text-align: right; padding-left: ;'|<math></math>
 +
|style='text-align: right;'|<math>- \csc \theta</math>
 +
|style='text-align: right;'|<math>\sec \theta</math>
 +
|style='text-align: right;'|<math>\csc \theta</math>
 +
|style='text-align: right;'|<math>- \csc \theta</math>
 +
|-
 +
!style='border-style: solid none solid solid; text-align: right; padding-left: 2em;'|<math>\sec \ </math>
 +
!style='border-style: solid solid solid none; text-align: right; padding-left: ;'|<math></math>
 +
|style='text-align: right;'|<math>\sec \theta</math>
 +
|style='text-align: right;'|<math>\csc \theta</math>
 +
|style='text-align: right;'|<math>- \sec \theta</math>
 +
|style='text-align: right;'|<math>\sec \theta</math>
 +
|-
 +
!style='border-style: solid none solid solid; text-align: right; padding-left: 2em;'|<math>\cot \ </math>
 +
!style='border-style: solid solid solid none; text-align: right; padding-left: ;'|<math></math>
 +
|style='text-align: right;'|<math>- \cot \theta</math>
 +
|style='text-align: right;'|<math>\tan \theta</math>
 +
|style='text-align: right;'|<math>- \cot \theta</math>
 +
|style='text-align: right;'|<math>- \cot \theta</math>
 +
|}
 +
 
 +
So for example, by using the equality <math>\sin \left(\frac{\pi}{2} - \theta\right) = \cos \theta</math> (found in the table above at row <math>\;\operatorname{func} = \sin\;</math> and column <math>\;\operatorname{func}\left(\frac{\pi}{2} - \theta\right)</math>), the equation <math>\cos \theta = x</math> can be transformed into <math>\sin \left(\frac{\pi}{2} - \theta\right) = x,</math> which allows for the solution to the equation <math>\;\sin \varphi = x\;</math> (where <math>\varphi := \frac{\pi}{2} - \theta</math>) to be used; that solution being:
 +
<math>\varphi  = (-1)^k \arcsin (x) + \pi k \; \text{ for some } k \in \Z,</math>
 +
which becomes:
 +
<math display="block">\frac{\pi}{2} - \theta ~=~ (-1)^k \arcsin (x) + \pi k \quad \text{ for some } k \in \Z</math>
 +
where using the fact that <math>(-1)^{k} = (-1)^{-k}</math> and substituting <math>h := - k</math> proves that another solution to <math>\;\cos \theta = x\;</math> is:
 +
<math display="block">\theta ~=~ (-1)^{h+1} \arcsin (x) + \pi h + \frac{\pi}{2} \quad \text{ for some } h \in \Z.</math>
 +
The substitution <math>\;\arcsin x = \frac{\pi}{2} - \arccos x\;</math> may be used express the right hand side of the above formula in terms of <math>\;\arccos x\;</math> instead of <math>\;\arcsin x.\;</math> 
 +
<!--
 +
{|class="wikitable" style="background-color: #FFFFFF"
 +
|rowspan="2" colspan="3"! {{diagonal split header|Function|<math>\varphi</math>}}
 +
!style='border-style: solid solid none solid;'|<math>\sin \varphi</math>
 +
!style='border-style: solid solid none solid;'|<math>\cos \varphi</math>
 +
!style='border-style: solid solid none solid;'|<math>\tan \varphi</math>
 +
!style='border-style: solid solid none solid;'|<math>\csc \varphi</math>
 +
!style='border-style: solid solid none solid;'|<math>\sec \varphi</math>
 +
!style='border-style: solid solid none solid;'|<math>\cot \varphi</math>
 +
|-
 +
<!-- Spanned from above --><!--
 +
!style='border-style: none solid solid solid;'|<math>\scriptstyle|\,\scriptstyle|</math>
 +
!style='border-style: none solid solid solid;'|<math>\scriptstyle|\,\scriptstyle|</math>
 +
!style='border-style: none solid solid solid;'|<math>\scriptstyle|\,\scriptstyle|</math>
 +
!style='border-style: none solid solid solid;'|<math>\scriptstyle|\,\scriptstyle|</math>
 +
!style='border-style: none solid solid solid;'|<math>\scriptstyle|\,\scriptstyle|</math>
 +
!style='border-style: none solid solid solid;'|<math>\scriptstyle|\,\scriptstyle|</math>
 +
|-
 +
|style='border-style: solid none solid solid; text-align: right; padding-left: 2em;'|<math>\varphi</math>
 +
|style='border-style: solid none solid none; text-align: right; padding-left: ;'|<math>=</math>
 +
|style='border-style: solid solid solid none; text-align: right; padding-left: ;'|<math>- \theta</math>
 +
|style='text-align: right;'|<math>- \sin \theta</math>
 +
|style='text-align: right;'|<math>\cos \theta</math>
 +
|style='text-align: right;'|<math>- \tan \theta</math>
 +
|style='text-align: right;'|<math>- \csc \theta</math>
 +
|style='text-align: right;'|<math>\sec \theta</math>
 +
|style='text-align: right;'|<math>- \cot \theta</math>
 +
|-
 +
|style='border-style: solid none solid solid; text-align: right; padding-left: 2em;'|<math>\varphi</math>
 +
|style='border-style: solid none solid none; text-align: right; padding-left: ;'|<math>=</math>
 +
|style='border-style: solid solid solid none; text-align: right; padding-left: ;'|<math>\frac{\pi}{2} - \theta</math>
 +
|style='text-align: right;'|<math>\cos \theta</math>
 +
|style='text-align: right;'|<math>\sin \theta</math>
 +
|style='text-align: right;'|<math>\cot \theta</math>
 +
|style='text-align: right;'|<math>\sec \theta</math>
 +
|style='text-align: right;'|<math>\csc \theta</math>
 +
|style='text-align: right;'|<math>\tan \theta</math>
 +
|-
 +
|style='border-style: solid none solid solid; text-align: right; padding-left: 2em;'|<math>\varphi</math>
 +
|style='border-style: solid none solid none; text-align: right; padding-left: ;'|<math>=</math>
 +
|style='border-style: solid solid solid none; text-align: right; padding-left: ;'|<math>\pi - \theta</math>
 +
|style='text-align: right;'|<math>\sin \theta</math>
 +
|style='text-align: right;'|<math>- \cos \theta</math>
 +
|style='text-align: right;'|<math>- \tan \theta</math>
 +
|style='text-align: right;'|<math>\csc \theta</math>
 +
|style='text-align: right;'|<math>- \sec \theta</math>
 +
|style='text-align: right;'|<math>- \cot \theta</math>
 +
|-
 +
|style='border-style: solid none solid solid; text-align: right; padding-left: 2em;'|<math>\varphi</math>
 +
|style='border-style: solid none solid none; text-align: right; padding-left: ;'|<math>=</math>
 +
|style='border-style: solid none solid none; text-align: right; padding-left: ;'|<math>2 \pi - \theta</math>
 +
|style='text-align: right;'|<math>- \sin \theta</math>
 +
|style='text-align: right;'|<math>\cos \theta</math>
 +
|style='text-align: right;'|<math>- \tan \theta</math>
 +
|style='text-align: right;'|<math>- \csc \theta</math>
 +
|style='text-align: right;'|<math>\sec \theta</math>
 +
|style='text-align: right;'|<math>- \cot \theta</math>
 +
|}
 +
-->
 +
 
 +
=== Relationships between trigonometric functions and inverse trigonometric functions ===
 +
 
 +
Trigonometric functions of inverse trigonometric functions are tabulated below. A quick way to derive them is by considering the geometry of a right-angled triangle, with one side of length 1 and another side of length <math>x,</math> then applying the Pythagorean theorem and definitions of the trigonometric ratios. Purely algebraic derivations are longer. It is worth noting that for arcsecant and arccosecant, the diagram assumes that <math>x</math> is positive, and thus the result has to be corrected through the use of absolute values and the signum (sgn) operation.
 +
 
 +
{|class="wikitable"
 +
|-
 +
!<math>\theta</math>
 +
!<math>\sin(\theta)</math>
 +
!<math>\cos(\theta)</math>
 +
!<math>\tan(\theta)</math>
 +
!Diagram
 +
|-
 +
!<math>\arcsin(x)</math>
 +
|<math>\sin(\arcsin(x)) = x </math>
 +
|<math>\cos(\arcsin(x)) = \sqrt{1-x^2}</math>
 +
|<math>\tan(\arcsin(x)) = \frac{x}{\sqrt{1-x^2}}</math>
 +
|[[File:Trigonometric functions and inverse3.svg|150px]]
 +
|-
 +
!<math>\arccos(x)</math>
 +
|<math>\sin(\arccos(x)) = \sqrt{1-x^2}</math>
 +
|<math>\cos(\arccos(x)) = x </math>
 +
|<math>\tan(\arccos(x)) = \frac{\sqrt{1-x^2}}{x}</math>
 +
|[[File:Trigonometric functions and inverse.svg|150px]]
 +
|-
 +
!<math>\arctan(x)</math>
 +
|<math>\sin(\arctan(x)) = \frac{x}{\sqrt{1+x^2}}</math>
 +
|<math>\cos(\arctan(x)) = \frac{1}{\sqrt{1+x^2}}</math>
 +
|<math>\tan(\arctan(x)) = x</math>
 +
|[[File:Trigonometric functions and inverse2.svg|150px]]
 +
|-
 +
!<math>\arccot(x)</math>
 +
|<math>\sin(\arccot(x)) = \frac{1}{\sqrt{1+x^2}}</math>
 +
|<math>\cos(\arccot(x)) = \frac{x}{\sqrt{1+x^2}}</math>
 +
|<math>\tan(\arccot(x)) = \frac{1}{x}</math>
 +
|[[File:Trigonometric functions and inverse4.svg|150px]]
 +
|-
 +
!<math>\arcsec(x)</math>
 +
|<math>\sin(\arcsec(x)) = \frac{\sqrt{x^2-1}}{|x|}</math>
 +
|<math>\cos(\arcsec(x)) = \frac{1}{x}</math>
 +
|<math>\tan(\arcsec(x)) = \sgn(x)\sqrt{x^2-1}</math>
 +
|[[File:Trigonometric functions and inverse6.svg|150px]]
 +
|-
 +
!<math>\arccsc(x)</math>
 +
|<math>\sin(\arccsc(x)) = \frac{1}{x}</math>
 +
|<math>\cos(\arccsc(x)) = \frac{\sqrt{x^2-1}}{|x|}</math>
 +
|<math>\tan(\arccsc(x)) = \frac{\sgn(x)}{\sqrt{x^2-1}}</math>
 +
|[[File:Trigonometric functions and inverse5.svg|150px]]
 +
|-
 +
|}
 +
 
 +
===Relationships among the inverse trigonometric functions===
 +
[[Image:Arcsine Arccosine.svg|168px|right|thumb|The usual principal values of the arcsin(''x'') (red) and arccos(''x'') (blue) functions graphed on the cartesian plane.]]
 +
[[Image:Arctangent Arccotangent.svg|294px|right|thumb|The usual principal values of the arctan(''x'') and arccot(''x'') functions graphed on the cartesian plane.]]
 +
[[Image:Arcsecant Arccosecant.svg|294px|right|thumb|Principal values of the arcsec(''x'') and arccsc(''x'') functions graphed on the cartesian plane.]]
 +
 
 +
Complementary angles:
 +
:<math>\begin{align}
 +
\arccos(x) &= \frac{\pi}{2} - \arcsin(x) \\[0.5em]
 +
\arccot(x) &= \frac{\pi}{2} - \arctan(x) \\[0.5em]
 +
\arccsc(x) &= \frac{\pi}{2} - \arcsec(x)
 +
\end{align}</math>
 +
 
 +
Negative arguments:
 +
:<math>\begin{align}
 +
\arcsin(-x) &= -\arcsin(x) \\
 +
\arccos(-x) &= \pi -\arccos(x) \\
 +
\arctan(-x) &= -\arctan(x) \\
 +
\arccot(-x) &= \pi -\arccot(x) \\
 +
\arcsec(-x) &= \pi -\arcsec(x) \\
 +
\arccsc(-x) &= -\arccsc(x)
 +
\end{align}</math>
 +
 
 +
Reciprocal arguments:
 +
:<math>\begin{align}
 +
\arccos\left(\frac{1}{x}\right) &= \arcsec(x) \\[0.3em]
 +
\arcsin\left(\frac{1}{x}\right) &= \arccsc(x) \\[0.3em]
 +
\arctan\left(\frac{1}{x}\right) &= \frac{\pi}{2} - \arctan(x) = \arccot(x) \, , \text{ if } x > 0 \\[0.3em]
 +
\arctan\left(\frac{1}{x}\right) &= -\frac{\pi}{2} - \arctan(x) = \arccot(x) -\pi\, , \text{ if } x < 0 \\[0.3em]
 +
\arccot\left(\frac{1}{x}\right) &= \frac{\pi}{2} - \arccot(x) = \arctan(x) \, , \text{ if } x > 0 \\[0.3em]
 +
\arccot\left(\frac{1}{x}\right) &= \frac{3\pi}{2} - \arccot(x) = \pi + \arctan(x) \, , \text{ if } x < 0 \\[0.3em]
 +
\arcsec\left(\frac{1}{x}\right) &= \arccos(x) \\[0.3em]
 +
\arccsc\left(\frac{1}{x}\right) &= \arcsin(x)
 +
\end{align}</math>
 +
 
 +
Useful identities if one only has a fragment of a sine table:
 +
:<math>\begin{align}
 +
\arccos(x) &= \arcsin\left(\sqrt{1 - x^2}\right) \, , \text{ if } 0 \leq x \leq 1 \text{ , from which you get } \\
 +
\arccos    &\left(\frac{1-x^2}{1 + x^2}\right) = \arcsin \left (\frac{2x}{1 + x^2}\right) \, , \text{ if } 0 \leq x \leq 1 \\
 +
\arcsin    &\left(\sqrt{1 - x^2}\right) =\frac{\pi}{2}-\sgn(x)\arcsin(x) \\
 +
\arccos(x) &= \frac{1}{2}\arccos\left(2x^2-1\right) \, , \text{ if } 0 \leq x \leq 1 \\
 +
\arcsin(x) &= \frac{1}{2}\arccos\left(1-2x^2\right) \, , \text{ if } 0 \leq x \leq 1 \\
 +
\arcsin(x) &= \arctan\left(\frac{x}{\sqrt{1 - x^2}}\right) \\
 +
\arccos(x) &= \arctan\left(\frac{\sqrt{1 - x^2}}{x}\right) \\
 +
\arctan(x) &= \arcsin\left(\frac{x}{\sqrt{1 + x^2}}\right) \\
 +
\arccot(x) &= \arccos\left(\frac{x}{\sqrt{1 + x^2}}\right)
 +
\end{align}</math>
 +
 
 +
Whenever the square root of a complex number is used here, we choose the root with the positive real part (or positive imaginary part if the square was negative real).
 +
 
 +
A useful form that follows directly from the table above is
 +
 
 +
:<math>\arctan\left(x\right) = \arccos\left(\sqrt{\frac{1}{1+x^2}}\right)\, , \text{ if } x\geq 0 </math>.
 +
 
 +
It is obtained by recognizing that <math>\cos\left(\arctan\left(x\right)\right) = \sqrt{\frac{1}{1+x^2}} = \cos\left(\arccos\left(\sqrt{\frac{1}{1+x^2}}\right)\right)</math>.
 +
 
 +
From the half-angle formula, <math>\tan\left(\tfrac{\theta}{2}\right) = \tfrac{\sin(\theta)}{1 + \cos(\theta)}</math>, we get:
 +
:<math>\begin{align}
 +
\arcsin(x) &= 2 \arctan\left(\frac{x}{1 + \sqrt{1 - x^2}}\right) \\[0.5em]
 +
\arccos(x) &= 2 \arctan\left(\frac{\sqrt{1 - x^2}}{1 + x}\right) \, , \text{ if } -1 < x \leq  1 \\[0.5em]
 +
\arctan(x) &= 2 \arctan\left(\frac{x}{1 + \sqrt{1 + x^2}}\right)
 +
\end{align}</math>
 +
 
 +
===Arctangent addition formula===
 +
:<math>\arctan(u) \pm \arctan(v) = \arctan\left(\frac{u \pm v}{1 \mp uv}\right) \pmod \pi \, , \quad u v \ne 1 \, .</math>
 +
This is derived from the tangent addition formula
 +
:<math>\tan(\alpha \pm \beta) = \frac{\tan(\alpha) \pm \tan(\beta)}{1 \mp \tan(\alpha)\tan(\beta)} \, ,</math>
 +
by letting
 +
:<math>\alpha = \arctan(u) \, , \quad \beta = \arctan(v) \, .</math>
 +
 
 +
==In calculus==
 +
 
 +
===Derivatives of inverse trigonometric functions===
 +
 
 +
The derivatives for complex values of ''z'' are as follows:
 +
:<math>\begin{align}
 +
\frac{d}{dz} \arcsin(z) &{} = \frac{1}{\sqrt{1-z^2}} \; ;  &z &{}\neq -1, +1 \\
 +
\frac{d}{dz} \arccos(z) &{} = -\frac{1}{\sqrt{1-z^2}} \; ;  &z &{}\neq -1, +1 \\
 +
\frac{d}{dz} \arctan(z) &{} = \frac{1}{1+z^2} \; ;          &z &{}\neq -i, +i\\
 +
\frac{d}{dz} \arccot(z) &{} = -\frac{1}{1+z^2} \; ;        &z &{}\neq -i, +i \\
 +
\frac{d}{dz} \arcsec(z) &{} = \frac{1}{z^2 \sqrt{1 - \frac{1}{z^{2}}}} \; ;  &z &{}\neq -1, 0, +1 \\
 +
\frac{d}{dz} \arccsc(z) &{} = -\frac{1}{z^2 \sqrt{1 - \frac{1}{z^{2}}}} \; ;  &z &{}\neq -1, 0, +1
 +
\end{align}</math>
 +
Only for real values of ''x'':
 +
:<math>\begin{align}
 +
\frac{d}{dx} \arcsec(x) &{} = \frac{1}{|x| \sqrt{x^2-1}} \; ;  & |x| > 1\\
 +
\frac{d}{dx} \arccsc(x) &{} = -\frac{1}{|x| \sqrt{x^2-1}} \; ; & |x| > 1
 +
\end{align}</math>
 +
 
 +
For a sample derivation: if <math>\theta = \arcsin(x)</math>, we get:
 +
:<math>\frac{d \arcsin(x)}{dx} = \frac{d \theta}{d \sin(\theta)} = \frac{d \theta}{\cos(\theta) \, d \theta} = \frac{1}{\cos(\theta)} = \frac{1}{\sqrt{1-\sin^2(\theta)}} = \frac{1}{\sqrt{1-x^2}}</math>
 +
 
 +
===Expression as definite integrals===
 +
Integrating the derivative and fixing the value at one point gives an expression for the inverse trigonometric function as a definite integral:
 +
:<math>\begin{align}
 +
\arcsin(x) &{}= \int_0^x \frac{1}{\sqrt{1 - z^2}} \, dz \; , & |x| &{} \leq 1\\
 +
\arccos(x) &{}= \int_x^1 \frac{1}{\sqrt{1 - z^2}} \, dz \; , & |x| &{} \leq 1\\
 +
\arctan(x) &{}= \int_0^x \frac{1}{z^2 + 1} \, dz \; ,\\
 +
\arccot(x) &{}= \int_x^\infty \frac{1}{z^2 + 1} \, dz \; ,\\
 +
\arcsec(x) &{}= \int_1^x \frac{1}{z \sqrt{z^2 - 1}} \, dz = \pi + \int_x^{-1} \frac{1}{z \sqrt{z^2 - 1}} \, dz\; , & x &{} \geq 1\\
 +
\arccsc(x) &{}= \int_x^\infty \frac{1}{z \sqrt{z^2 - 1}} \, dz = \int_{-\infty}^x \frac{1}{z \sqrt{z^2 - 1}} \, dz \; , & x &{} \geq 1\\
 +
\end{align}</math>
 +
When ''x'' equals 1, the integrals with limited domains are improper integrals, but still well-defined.
 +
 
 +
===Indefinite integrals of inverse trigonometric functions===
 +
 
 +
For real and complex values of ''z'':
 +
:<math>\begin{align}
 +
\int \arcsin(z) \, dz &{}= z \, \arcsin(z) + \sqrt{1 - z^2} + C\\
 +
\int \arccos(z) \, dz &{}= z \, \arccos(z) - \sqrt{1 - z^2} + C\\
 +
\int \arctan(z) \, dz &{}= z \, \arctan(z) - \frac{1}{2} \ln \left( 1 + z^2 \right) + C\\
 +
\int \arccot(z) \, dz &{}= z \, \arccot(z) + \frac{1}{2} \ln \left( 1 + z^2 \right) + C\\
 +
\int \arcsec(z) \, dz &{}= z \, \arcsec(z) - \ln \left[ z \left( 1 + \sqrt{ \frac{z^2-1}{z^2} } \right) \right] + C\\
 +
\int \arccsc(z) \, dz &{}= z \, \arccsc(z) + \ln \left[ z \left( 1 + \sqrt{ \frac{z^2-1}{z^2} } \right) \right] + C
 +
\end{align}</math>
 +
 
 +
For real ''x'' ≥ 1:
 +
:<math>\begin{align}
 +
\int \arcsec(x) \, dx &{}= x \, \arcsec(x) - \ln \left( x + \sqrt{x^2-1} \right) + C\\
 +
\int \arccsc(x) \, dx &{}= x \, \arccsc(x) + \ln \left( x + \sqrt{x^2-1} \right) + C
 +
\end{align}</math>
 +
 
 +
For all real ''x'' not between -1 and 1:
 +
:<math>\begin{align}
 +
\int \arcsec(x) \, dx &{}= x \, \arcsec(x) - \sgn(x) \ln\left(\left| x + \sqrt{x^2-1}\right|\right) + C\\
 +
\int \arccsc(x) \, dx &{}= x \, \arccsc(x) + \sgn(x) \ln\left(\left| x + \sqrt{x^2-1}\right|\right) + C
 +
\end{align}</math>
 +
 
 +
The absolute value is necessary to compensate for both negative and positive values of the arcsecant and arccosecant functions. The signum function is also necessary due to the absolute values in the derivatives of the two functions, which create two different solutions for positive and negative values of x. These can be further simplified using the logarithmic definitions of the inverse hyperbolic functions:
 +
:<math>\begin{align}
 +
\int \arcsec(x) \, dx &{}= x \, \arcsec(x) - \operatorname{arcosh}(|x|) + C\\
 +
\int \arccsc(x) \, dx &{}= x \, \arccsc(x) + \operatorname{arcosh}(|x|) + C\\
 +
\end{align}</math>
 +
 
 +
The absolute value in the argument of the arcosh function creates a negative half of its graph, making it identical to the signum logarithmic function shown above.
 +
 
 +
All of these antiderivatives can be derived using integration by parts and the simple derivative forms shown above.
 +
 
 +
====Example====
 +
Using <math>\int u \, dv = u v - \int v \, du</math> (i.e. integration by parts), set
 +
 
 +
:<math>\begin{align}
 +
u &= \arcsin(x) & dv &= dx \\
 +
du &= \frac{dx}{\sqrt{1-x^2}} & v &= x
 +
\end{align}</math>
 +
 
 +
Then
 +
 
 +
:<math>\int \arcsin(x) \, dx = x \arcsin(x) - \int \frac{x}{\sqrt{1-x^2}} \, dx,</math>
 +
 
 +
which by the simple substitution <math>w=1-x^2,\ dw = -2x\,dx</math> yields the final result:
 +
 
 +
:<math>\int \arcsin(x) \, dx = x \arcsin(x) + \sqrt{1-x^2} + C </math>
 +
 
 +
==Resources==
 +
===Review===
 +
* [https://www.khanacademy.org/math/geometry/hs-geo-trig/hs-geo-solve-for-an-angle/a/inverse-trig-functions-intro Introduction to Inverse Trig Functions], Khan Academy
 +
* [https://www.youtube.com/watch?v=jt7p-mCC0ng Evaluating Inverse Trigonometric Functions], The Organic Chemistry Tutor
 +
 
 +
===Calculus===
 +
* [https://www.youtube.com/watch?v=KbYW9FDm-Zk Derivatives of Inverse Trigonometric Functions], The Organic Chemistry Tutor
 +
 
 +
===Notes===
 +
* [https://mathresearch.utsa.edu/wikiFiles/MAT1093/The%20inverse%20Sine,%20Cosine%20and%20Tangent%20functions/Esparza%201093%20Notes%203.1.pdf The inverse Sine, Cosine and Tangent functions]. Written notes created by Professor Esparza, UTSA.
 +
 
 +
== Licensing ==
 +
Content obtained and/or adapted from:
 +
* [https://en.wikipedia.org/wiki/Inverse_trigonometric_functions Inverse trigonometric functions, Wikipedia] under a CC BY-SA license

Latest revision as of 22:28, 13 November 2021

In mathematics, the inverse trigonometric functions (occasionally also called arcus functions, antitrigonometric functions or cyclometric functions are the inverse functions of the trigonometric functions (with suitably restricted domains). Specifically, they are the inverses of the sine, cosine, tangent (trigonometry)|tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.

Notation

Several notations for the inverse trigonometric functions exist. The most common convention is to name inverse trigonometric functions using an arc- prefix: arcsin(x), arccos(x), arctan(x), etc. This notation arises from the following geometric relationships: when measuring in radians, an angle of θ radians will correspond to an arc whose length is , where r is the radius of the circle. Thus in the unit circle, "the arc whose cosine is x" is the same as "the angle whose cosine is x", because the length of the arc of the circle in radii is the same as the measurement of the angle in radians. In computer programming languages, the inverse trigonometric functions are often called by the abbreviated forms asin, acos, atan.

The notations sin−1(x), cos−1(x), tan−1(x), etc., as introduced by John Herschel in 1813, are often used as well in English-language sources—conventions consistent with the notation of an inverse function. This might appear to conflict logically with the common semantics for expressions such as sin2(x), which refer to numeric power rather than function composition, and therefore may result in confusion between multiplicative inverse or reciprocal and compositional inverse. The confusion is somewhat mitigated by the fact that each of the reciprocal trigonometric functions has its own name—for example, (cos(x))−1 = sec(x). Nevertheless, certain authors advise against using it for its ambiguity. Another convention used by a few authors is to use an uppercase first letter, along with a −1 superscript: Sin−1(x), Cos−1(x), Tan−1(x), etc. This potentially avoids confusion with the multiplicative inverse, which should be represented by sin−1(x), cos−1(x), etc.

Since 2009, the ISO 80000-2 standard has specified solely the "arc" prefix for the inverse functions.

Basic concepts

Principal values

Since none of the six trigonometric functions are one-to-one, they must be restricted in order to have inverse functions. Therefore, the result ranges of the inverse functions are proper subsets of the domains of the original functions.

For example, using function in the sense of multivalued functions, just as the square root function could be defined from the function is defined so that For a given real number with there are multiple (in fact, countably infinite) numbers such that ; for example, but also etc. When only one value is desired, the function may be restricted to its principal branch. With this restriction, for each in the domain, the expression will evaluate only to a single value, called its principal value. These properties apply to all the inverse trigonometric functions.

The principal inverses are listed in the following table.

Name Usual notation Definition Domain of for real result Range of usual principal value
(radians)
Range of usual principal value
(degrees)
arcsine x = sin(y)
arccosine x = cos(y)
arctangent x = tan(y) all real numbers
arccotangent x = cot(y) all real numbers
arcsecant x = sec(y)
arccosecant x = csc(y)

(Note: Some authors define the range of arcsecant to be (), because the tangent function is nonnegative on this domain. This makes some computations more consistent. For example, using this range, whereas with the range (), we would have to write since tangent is nonnegative on but nonpositive on For a similar reason, the same authors define the range of arccosecant to be or )

If is allowed to be a complex number, then the range of applies only to its real part.

Solutions to elementary trigonometric equations

Each of the trigonometric functions is periodic in the real part of its argument, running through all its values twice in each interval of :

  • Sine and cosecant begin their period at (where is an integer), finish it at and then reverse themselves over to
  • Cosine and secant begin their period at finish it at and then reverse themselves over to
  • Tangent begins its period at finishes it at and then repeats it (forward) over to
  • Cotangent begins its period at finishes it at and then repeats it (forward) over to

This periodicity is reflected in the general inverses, where is some integer.

For example, if then for some While if then for some where will be even if and it will be odd if The equations and have the same solutions as and respectively. In all equations above except for those just solved (i.e. except for / and /), the integer in the solution's formula is uniquely determined by (for fixed and ).

Detailed example and explanation of the "plus or minus" symbol

The solutions to and involve the "plus or minus" symbol whose meaning is now clarified. Only the solution to will be discussed since the discussion for is the same. We are given between and we know that there is an angle in some give interval that satisfies We want to find this The formula for the solution involves:

If (which only happens when ) then and so either way, can only be equal to But if which will now be assumed, then the solution to which is written above as
is shorthand for the following statement: Either

  • for some integer
    or else
  • for some integer

Because and exactly one of these two equalities can hold. Additional information about is needed to determine which one holds. For example, suppose that and that all that is known about is that (and nothing more is known). Then

and moreover, in this particular case (for both the case and the case) and so consequently,
This means that could be either or Without additional information it is not possible to determine which of these values has. An example of some additional information that could determine the value of would be knowing that the angle is above the -axis (in which case ) or alternatively, knowing that it is below the -axis (in which case ).

Transforming equations

The equations above can be transformed by using the identities

So for example, by using the equality (found in the table above at row and column ), the equation can be transformed into which allows for the solution to the equation (where ) to be used; that solution being: which becomes:

where using the fact that and substituting proves that another solution to is:
The substitution may be used express the right hand side of the above formula in terms of instead of

Relationships between trigonometric functions and inverse trigonometric functions

Trigonometric functions of inverse trigonometric functions are tabulated below. A quick way to derive them is by considering the geometry of a right-angled triangle, with one side of length 1 and another side of length then applying the Pythagorean theorem and definitions of the trigonometric ratios. Purely algebraic derivations are longer. It is worth noting that for arcsecant and arccosecant, the diagram assumes that is positive, and thus the result has to be corrected through the use of absolute values and the signum (sgn) operation.

Diagram
Trigonometric functions and inverse3.svg
Trigonometric functions and inverse.svg
Trigonometric functions and inverse2.svg
Trigonometric functions and inverse4.svg
Trigonometric functions and inverse6.svg
Trigonometric functions and inverse5.svg

Relationships among the inverse trigonometric functions

The usual principal values of the arcsin(x) (red) and arccos(x) (blue) functions graphed on the cartesian plane.
The usual principal values of the arctan(x) and arccot(x) functions graphed on the cartesian plane.
Principal values of the arcsec(x) and arccsc(x) functions graphed on the cartesian plane.

Complementary angles:

Negative arguments:

Reciprocal arguments:

Useful identities if one only has a fragment of a sine table:

Whenever the square root of a complex number is used here, we choose the root with the positive real part (or positive imaginary part if the square was negative real).

A useful form that follows directly from the table above is

.

It is obtained by recognizing that .

From the half-angle formula, , we get:

Arctangent addition formula

This is derived from the tangent addition formula

by letting

In calculus

Derivatives of inverse trigonometric functions

The derivatives for complex values of z are as follows:

Only for real values of x:

For a sample derivation: if , we get:

Expression as definite integrals

Integrating the derivative and fixing the value at one point gives an expression for the inverse trigonometric function as a definite integral:

When x equals 1, the integrals with limited domains are improper integrals, but still well-defined.

Indefinite integrals of inverse trigonometric functions

For real and complex values of z:

For real x ≥ 1:

For all real x not between -1 and 1:

The absolute value is necessary to compensate for both negative and positive values of the arcsecant and arccosecant functions. The signum function is also necessary due to the absolute values in the derivatives of the two functions, which create two different solutions for positive and negative values of x. These can be further simplified using the logarithmic definitions of the inverse hyperbolic functions:

The absolute value in the argument of the arcosh function creates a negative half of its graph, making it identical to the signum logarithmic function shown above.

All of these antiderivatives can be derived using integration by parts and the simple derivative forms shown above.

Example

Using (i.e. integration by parts), set

Then

which by the simple substitution yields the final result:

Resources

Review

Calculus

Notes

Licensing

Content obtained and/or adapted from: