Difference between revisions of "Double-angle formulas"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
(fixing link to go straight to pdf)
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
Double angle formulas:
 +
* <math> \sin{(2x)} = 2\sin{x}\cos{x} </math>
 +
 +
* <math> \cos{(2x)} = \cos^2{x} - \sin^2{x} </math>
 +
: <math> \;\;\;\;\;\;\;\;\;\;\;\;\; = 2\cos^2{x} - 1 </math>
 +
: <math> \;\;\;\;\;\;\;\;\;\;\;\;\; = 1 - 2\sin^2{x} </math>
 +
 +
* <math> \tan{(2x)} = \frac{2\tan{x}}{1 - \tan^2{x}} </math>
 +
 +
==Resources==
 
* [https://mathresearch.utsa.edu/wikiFiles/MAT1093/Double-angle%20formulas/Esparza%201093%20Notes%203.6A.pdf Double-angle formulas]. Written notes created by Professor Esparza, UTSA.
 
* [https://mathresearch.utsa.edu/wikiFiles/MAT1093/Double-angle%20formulas/Esparza%201093%20Notes%203.6A.pdf Double-angle formulas]. Written notes created by Professor Esparza, UTSA.

Latest revision as of 14:44, 23 September 2021

Double angle formulas:

Resources