Difference between revisions of "Logarithmic Functions"
| Line 24: | Line 24: | ||
A '''logarithmic equation''' is an equation wherein one or more of the terms is a logarithm. | A '''logarithmic equation''' is an equation wherein one or more of the terms is a logarithm. | ||
| − | e.g. Solve <math>\ | + | e.g. Solve <math>\log x + \log (x+2) = 2</math> (<math>\log</math> is another way of writing <math>\log_{10}</math>). |
<math>\begin{align} | <math>\begin{align} | ||
| − | \ | + | \log x + \log (x+2) &= 2 \\ |
| − | \ | + | \log (x(x+2)) &= 2 \\ |
x(x+2) &= 100 \\ | x(x+2) &= 100 \\ | ||
x^2 + 2x &= 100 \\ | x^2 + 2x &= 100 \\ | ||
Revision as of 11:32, 4 October 2021
Contents
Logarithmic Functions
In mathematics you can find the inverse of an exponential function by switching x and y around: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y = b^x\,} becomes Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = b^y\,} . The problem arises on how to find the value of y. The logarithmic function solved this problem. All conversions of logarithmic function into an exponential function follow the same pattern: becomes . If a log is given without a written b then b=10. Also with logarithmic functions, b > 0 and . There are 2 cases where the log is equal to x: and .
To recap, a logarithm is the inverse function of an exponent.
e.g. The inverse of the function is .
In general, , given that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b > 0} .
Laws of Logarithmic Functions
When X and Y are positive.
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log_bXY = \log_bX + \log_bY\,}
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log_b \frac{X}{Y} = \log_bX - \log_bY\,}
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log_b X^k = k \log_bX\,}
Change of Base
When x and b are positive real numbers and are not equal to 1. Then you can write Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log_a x\,} as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac { \log_b x}{ \log_b a}} . This works for the natural log as well. here is an example:
Solving a Logarithmic Equation
A logarithmic equation is an equation wherein one or more of the terms is a logarithm.
e.g. Solve Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log x + \log (x+2) = 2} (Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log} is another way of writing Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log_{10}} ).
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \log x + \log (x+2) &= 2 \\ \log (x(x+2)) &= 2 \\ x(x+2) &= 100 \\ x^2 + 2x &= 100 \\ (x + 1)^2 &= 101 \\ x+1 &= \sqrt{101} \\ x &= -1 \pm \sqrt{101} \end{align}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log_2 8 = \frac { \log 8}{ \log 2} = \frac {.9}{.3} = 3\,} now check Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2^3 = 8\,}
Resources
- Logarithmic Functions, Book Chapter
- Guided Notes