Difference between revisions of "MAT1133"
(14 intermediate revisions by 2 users not shown) | |||
Line 52: | Line 52: | ||
* 3.3 | * 3.3 | ||
|| | || | ||
− | * Applications of [[Linear Functions]] | + | * Applications of [[Linear Equations|Linear Functions]] |
|| | || | ||
* Fundamentals of [[Intro to Polynomial Functions|Polynomials]] | * Fundamentals of [[Intro to Polynomial Functions|Polynomials]] | ||
* [[Linear Equations]] | * [[Linear Equations]] | ||
* [[Properties of Functions]] | * [[Properties of Functions]] | ||
− | * [[Linear Functions]] | + | * [[Linear Equations|Linear Functions]] |
|| | || | ||
* Solve real-world problems involving cost analysis and rates of change. | * Solve real-world problems involving cost analysis and rates of change. | ||
Line 125: | Line 125: | ||
* [[Equation of a Line]] | * [[Equation of a Line]] | ||
* [[Average]] | * [[Average]] | ||
− | * Algebraic manipulations: | + | * Algebraic manipulations:<!--maybe consolidate with "Elementary Algebra"--> |
:- Distribution | :- Distribution | ||
:- [[Solving Equations]] | :- [[Solving Equations]] | ||
Line 165: | Line 165: | ||
|| | || | ||
* Identify that the power rule is based upon the limit definition of the derivative. | * Identify that the power rule is based upon the limit definition of the derivative. | ||
− | * Find derivatives using the constant rule, power rule, constant | + | * Find derivatives using the constant rule, power rule, constant multiple rule, and sum-or-difference rule. |
* Apply understanding of derivatives to solve real world problems involving marginal C/R/P | * Apply understanding of derivatives to solve real world problems involving marginal C/R/P | ||
|- | |- | ||
Line 195: | Line 195: | ||
* 11.8 | * 11.8 | ||
|| | || | ||
− | * [[Derivatives of Exponential Functions]] | + | * [[Derivatives of Exponential and Logarithmic Functions|Derivatives of Exponential Functions]] |
|| | || | ||
* [[The Derivative as a Function]] | * [[The Derivative as a Function]] | ||
* [[Exponential Functions]] | * [[Exponential Functions]] | ||
|| | || | ||
− | |||
* Find derivatives of exponential functions, including composite functions. | * Find derivatives of exponential functions, including composite functions. | ||
* Find derivatives using the generalized exponential rule. | * Find derivatives using the generalized exponential rule. | ||
Line 209: | Line 208: | ||
* 11.8 | * 11.8 | ||
|| | || | ||
− | * [[Derivatives of Logarithmic Functions]] | + | * [[Derivatives of Exponential and Logarithmic Functions|Derivatives of Logarithmic Functions]] |
|| | || | ||
* [[The Derivative as a Function]] | * [[The Derivative as a Function]] | ||
* [[Logarithmic Functions]] | * [[Logarithmic Functions]] | ||
|| | || | ||
+ | * Review the inverse relationship between exponential and logarithmic functions. | ||
* Find derivatives of logarithmic functions, including composite functions. | * Find derivatives of logarithmic functions, including composite functions. | ||
* Find derivatives using the generalized logarithmic rule. | * Find derivatives using the generalized logarithmic rule. | ||
Line 227: | Line 227: | ||
* [[Simplifying Radicals]] | * [[Simplifying Radicals]] | ||
* Finding [[Domain]] and [[Range]] of a function | * Finding [[Domain]] and [[Range]] of a function | ||
+ | * [[Finding Roots of an Equation|Zeros of a Function]] | ||
|| | || | ||
* Understand the connection between the derivative and a graph's increasing/decreasing pattern. | * Understand the connection between the derivative and a graph's increasing/decreasing pattern. | ||
Line 241: | Line 242: | ||
|| | || | ||
* Closed [[Intervals]] | * Closed [[Intervals]] | ||
− | * [[ | + | * [[Derivatives and Graphs]] |
+ | * [[Finding Roots of an Equation|Zeros of a Function]] | ||
|| | || | ||
* Define notation for higher derivatives. | * Define notation for higher derivatives. | ||
Line 258: | Line 260: | ||
|| | || | ||
* The [[First Derivative Test]] | * The [[First Derivative Test]] | ||
− | * [[Second Derivative Test]] | + | * The [[Second Derivative Test]] |
|| | || | ||
* Use the Extreme Value Theorem to find absolute extrema of continuous functions on closed intervals. | * Use the Extreme Value Theorem to find absolute extrema of continuous functions on closed intervals. | ||
Line 270: | Line 272: | ||
* [[Implicit Differentiation]] | * [[Implicit Differentiation]] | ||
|| | || | ||
− | * Differentiation Rules | + | * [[Differentiation Rules]]<!--needs to be a page listing all deriv properties/rules--> |
− | * The | + | * The Derivative as a [[Rates of Change|Rate of Change]] |
+ | * [[Solving Equations]] | ||
+ | * [[Systems of Linear Equations in Two Variables|Solving Pairs of Equations]] | ||
+ | * General problem reading/solving skills | ||
|| | || | ||
* Find derivatives of implicit functions. | * Find derivatives of implicit functions. | ||
Line 283: | Line 288: | ||
* [[Related Rates]] | * [[Related Rates]] | ||
|| | || | ||
− | |||
− | |||
* [[Implicit Differentiation]] | * [[Implicit Differentiation]] | ||
|| | || | ||
Line 295: | Line 298: | ||
* [[Antiderivatives]] | * [[Antiderivatives]] | ||
|| | || | ||
− | * [[ | + | * [[Differentiation Rules]]<!--needs to be a page listing all deriv properties/rules--> |
− | |||
− | |||
− | |||
|| | || | ||
* Find antiderivatives of functions using the power, constant-multiple, and sum-or-difference differentiation rules, as well as derivatives of exponential and logarithmic functions. | * Find antiderivatives of functions using the power, constant-multiple, and sum-or-difference differentiation rules, as well as derivatives of exponential and logarithmic functions. | ||
− | * | + | * Use anti-differentiation to solve simple initial-value problems involving real world contexts. |
|- | |- | ||
|Week 11 | |Week 11 | ||
Line 314: | Line 314: | ||
* Find differentials of various functions. | * Find differentials of various functions. | ||
* Find antiderivatives using integration by substitution. | * Find antiderivatives using integration by substitution. | ||
− | * | + | * Use anti-differentiation to solve simple initial-value problems involving real world contexts. |
|- | |- | ||
|Week 12 | |Week 12 | ||
Line 323: | Line 323: | ||
|| | || | ||
* [[Graphs]] of functions | * [[Graphs]] of functions | ||
− | * [[ | + | * [[Areas of basic shapes|Areas]] of quadrilaterals and triangles. |
|| | || | ||
* Use numerical integration technology to calculate definite integrals. | * Use numerical integration technology to calculate definite integrals. | ||
Line 337: | Line 337: | ||
* [[The Definite Integral]] | * [[The Definite Integral]] | ||
* [[Integration by Substitution]] | * [[Integration by Substitution]] | ||
+ | * [[Finding Roots of an Equation|Zeros of a Function]] | ||
|| | || | ||
− | * Apply the fundamental theorem of calculus to | + | * Apply the fundamental theorem of calculus to calculate definite integrals. |
− | * | + | * Calculate the area between the graph of a function and the x-axis on a closed interval. |
* Apply understanding of definite integrals to solve real world problems. | * Apply understanding of definite integrals to solve real world problems. | ||
|- | |- | ||
Line 350: | Line 351: | ||
* [[Solving Equations]] | * [[Solving Equations]] | ||
* [[The Fundamental Theorem of Calculus]] | * [[The Fundamental Theorem of Calculus]] | ||
− | |||
|| | || | ||
− | |||
* Find the area between the graphs of two functions. | * Find the area between the graphs of two functions. | ||
* Apply understanding of definite integrals to solve real world problems, including consumers’ surplus and producers’ surplus. | * Apply understanding of definite integrals to solve real world problems, including consumers’ surplus and producers’ surplus. |
Latest revision as of 16:22, 7 October 2021
Course Catalog
MAT 1133. Calculus for Business. (3-0) 3 Credit Hours. (TCCN = MATH 1325)
Prerequisite: MAT1053 with a grade of "C-" or better, or an equivalent course, or satisfactory performance on a placement examination. This course is the basic study of limits and continuity, differentiation of single and multivariable functions, optimization and graphing, and integration of elementary, single variable functions, with an emphasis on applications in business and economics. May apply toward the Core Curriculum requirement in Mathematics. (Credit cannot be earned for both MAT 1033 and MAT 1133.) Generally offered: Fall, Spring, Summer. Course Fees: DL01 $75; LRC1 $12; LRS1 $45; STSI $21.
Text
In this course, you will use MyLab Math with this text: Mathematics with Applications 12th ed. Lial, Hungerford, Holcomb. The physical book is not required since MyLab Math (MLM) has the text available in a digital format.
Topics List
Please note that weeks 5, 10, and 14 are used for review and examination.
Date | Sections | Topics | Prerequisite Skills | Student Learning Outcomes |
---|---|---|---|---|
Week 1 |
|
|
| |
Week 1 |
|
| ||
Week 1 |
|
|
|
|
Week 2 |
|
|
|
|
Week 2 |
|
| ||
Week 2 |
|
| ||
Week 3 |
|
|
| |
Week 3 |
|
| ||
Week 4 |
|
| ||
Week 4 |
|
| ||
Week 6 |
|
| ||
Week 6 |
|
| ||
Week 6 |
|
| ||
Week 7 |
|
|
| |
Week 7 |
|
| ||
Week 8 |
|
| ||
Week 9 |
|
|
| |
Week 9 |
|
| ||
Week 11 |
|
| ||
Week 11 |
|
| ||
Week 12 |
|
| ||
Week 12 |
|
| ||
Week 13 |
|
| ||
Week 15 |
|
|