The Fundamental Theorem of Calculus
The fundamental theorem of calculus is a critical portion of calculus because it links the concept of a derivative to that of an integral. As a result, we can use our knowledge of derivatives to find the area under the curve, which is often quicker and simpler than using the definition of the integral.
Contents
Mean Value Theorem for Integration
We will need the following theorem in the discussion of the Fundamental Theorem of Calculus.
Suppose is continuous on . Then for some .
Proof of the Mean Value Theorem for Integration
satisfies the requirements of the Extreme Value Theorem, so it has a minimum and a maximum in . Since
and since
- for all
we have
Since is continuous, by the Intermediate Value Theorem there is some with such that
Fundamental Theorem of Calculus
Statement of the Fundamental Theorem
Suppose that is continuous on . We can define a function by
Suppose is continuous on and is defined by
Then is differentiable on and for all ,
When we have such functions and where for every in some interval we say that is the antiderivative of on .
Suppose that is continuous on and that is any antiderivative of . Then
Note: a minority of mathematicians refer to part one as two and part two as one. All mathematicians refer to what is stated here as part 2 as The Fundamental Theorem of Calculus.
Proofs
Proof of Fundamental Theorem of Calculus Part I
Suppose . Pick so that . Then
and
Subtracting the two equations gives
Now
so rearranging this we have
According to the Mean Value Theorem for Integration, there exists a such that
Notice that depends on . Anyway what we have shown is that
and dividing both sides by gives
Take the limit as we get the definition of the derivative of at so we have
To find the other limit, we will use the squeeze theorem. , so . Hence,
As is continuous we have
which completes the proof.
Proof of Fundamental Theorem of Calculus Part II
Define . Then by the Fundamental Theorem of Calculus part I we know that is differentiable on and for all
So is an antiderivative of . Since we were assuming that was also an antiderivative for all ,
Let . The Mean Value Theorem applied to on with says that
for some in . But since for all in , must equal for all in , i.e. g(x) is constant on .
This implies there is a constant such that for all ,
and as is continuous we see this holds when and as well. And putting gives
Notation for Evaluating Definite Integrals
The second part of the Fundamental Theorem of Calculus gives us a way to calculate definite integrals. Just find an antiderivative of the integrand, and subtract the value of the antiderivative at the lower bound from the value of the antiderivative at the upper bound. That is
where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F'(x)=f(x)} . As a convenience, we use the notation
to represent Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F(b)-F(a)}
Integration of Polynomials
Using the power rule for differentiation we can find a formula for the integral of a power using the Fundamental Theorem of Calculus. Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=x^n} . We want to find an antiderivative for . Since the differentiation rule for powers lowers the power by 1 we have that
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}x^{n+1}=(n+1)x^n}
As long as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n+1\ne0} we can divide by to get
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\left(\frac{x^{n+1}}{n+1}\right)=x^n=f(x)}
So the function is an antiderivative of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} . If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\notin[a,b]} then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} is continuous on Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [a,b]} and, by applying the Fundamental Theorem of Calculus, we can calculate the integral of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} to get the following rule.
- Power Rule of Integration I
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\limits_a^b x^ndx=\frac{x^{n+1}}{n+1}\Bigg|_a^b=\frac{b^{n+1}-a^{n+1}}{n+1}} as long as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n\ne-1} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\notin[a,b]} .
Notice that we allow all values of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} , even negative or fractional. If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n>0} then this works even if includes Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0} .
- Power Rule of Integration II
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\limits_a^b x^ndx=\frac{x^{n+1}}{n+1}\Bigg|_a^b=\frac{b^{n+1}-a^{n+1}}{n+1}} as long as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n>0} .
- Examples
- To find Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\limits_1^2x^3dx} we raise the power by 1 and have to divide by 4. So
- The power rule also works for negative powers. For instance
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\limits_1^3\frac{dx}{x^3}=\int\limits_1^3x^{-3}dx=\frac{x^{-2}}{-2}\Bigg|_1^3=\frac{1}{-2}\left(3^{-2}-1^{-2}\right)=-\frac12\left(\frac{1}{3^2}-1\right)=-\frac12\left(\frac19-1\right)=\frac12\cdot\frac89=\frac49}
- We can also use the power rule for fractional powers. For instance
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\limits_0^5\sqrt{x}dx=\int\limits_0^5x^\frac12dx=\frac{x\sqrt{x}}{\frac32}\Bigg|_0^5=\frac23\left(5^\frac32-0^\frac32\right)=\frac{10\sqrt5}{3}}
- Using linearity the power rule can also be thought of as applying to constants. For example,
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\int\limits_3^{11}7dx=\int\limits_3^{11}7x^0dx=7\int\limits_3^{11}x^0dx=7x\Bigg|_3^{11}=7(11-3)=56}
- Using the linearity rule we can now integrate any polynomial. For example
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\limits_0^3(3x^2+4x+2)dx=(x^3+2x^2+2x)\Bigg|_0^3=3^3+2\cdot 3^2+2\cdot3-0=27+18+6=51}
Exercises
Questions
- Evaluate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\limits_0^1x^6dx}
- Evaluate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\limits_1^2x^6dx}
- Evaluate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\limits_0^2x^6dx}
Solutions
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{127}{7}=18.\overline{142857}}
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{128}{7}=18.\overline{285714}}
Resources
The Fundamental Theorem of Calculus, Part 1
- Definite Integral & Antiderivatives (Slides 6&7). PowerPoint file created by Professor Cynthia Roberts, UTSA.
- Fundamental Theorem of Calculus Part 1. PowerPoint file created by Professor Cynthia Roberts, UTSA.
- The Fundamental Theorem of Calculus PowerPoint file created by Dr. Sara Shirinkam, UTSA.
- Fundamental Theorem of Calculus Part 1 by patrickJMT
- PART 1 OF THE DREADED FUNDAMENTAL THEOREM OF CALCULUS! by Krista King
- Fundamental Theorem of Calculus Part 1 by The Organic Chemistry Tutor
- The Second Fundamental Theorem of Calculus by James Sousa, Math is Power 4U
- Ex 1: The Second Fundamental Theorem of Calculus by James Sousa, Math is Power 4U
- Ex 2: The Second Fundamental Theorem of Calculus (Reverse Order) by James Sousa, Math is Power 4U
- Ex 3: The Second Fundamental Theorem of Calculus by James Sousa, Math is Power 4U
- Ex 4: The Second Fundamental Theorem of Calculus with Chain Rule by James Sousa, Math is Power 4U
- Ex 5: The Second Fundamental Theorem of Calculus with Chain Rule by James Sousa, Math is Power 4U
- Ex 6: Second Fundamental Theorem of Calculus with Chain Rule by James Sousa, Math is Power 4U
- Ex 7: Second Fundamental Theorem of Calculus with Chain Rule by James Sousa, Math is Power 4U
The Fundamental Theorem of Calculus, Part 2
- The Fundamental Theorem of Calculus by James Sousa, Math is Power 4U
- The Fundamental Theorem of Calculus Part 2 by patrickJMT
- PART 2 OF THE FUNDAMENTAL THEOREM OF CALCULUS! by Krista King
- The Fundamental Theorem of Calculus Part 2 by The Organic Chemistry Tutor
Licensing
Content obtained and/or adapted from:
- Fundamental Theorem of Calculus, Wikibooks: Calculus under a CC BY-SA license