Difference between revisions of "MAT3213"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
(Added content to the table (1.1 - 1.3))
(minor edits to table contents)
Line 149: Line 149:
 
||
 
||
  
<div style="text-align: center;">3.2</div>
+
<div style="text-align: center;">1.1</div>
  
 
||
 
||
Line 224: Line 224:
  
  
|Week&nbsp;5
+
|Week&nbsp;2
  
 
||
 
||
  
<div style="text-align: center;">12</div>
+
<div style="text-align: center;">1.2</div>
  
 
||   
 
||   

Revision as of 10:50, 15 July 2020

The textbook for this course is Introduction to Real Analysis by Bartle and Sherbert

A comprehensive list of all undergraduate math courses at UTSA can be found here.

The Wikipedia summary of Real Analysis.

Topics List

Date Sections Topics Prerequisite Skills Student Learning Outcomes
Week 1
1.1

Basic Terminology

  • Subsets
  • The definition of equality between two sets
  • Commonly used sets


Week 1
1.1


Set Operations

  • Union, intersection and complements of sets
  • De Morgans Laws for sets
  • Infinite Unions and intersections of sets
Week 1
1.1

Functions (The Cartesian product definition)

  • The Cartesian Product
  • Definition of a function
  • Domain and Range in terms of the Cartesian product
  • Transformations and Machines


Week 1/2
1.1

Direct and Inverse Images

  • Definition of the Direct Image
  • Definition of the Inverse Image


Week 1/2
1.1


Injective and Surjective Functions

  • Injective functions
  • Surjective functions
  • Bijective functions


Week 1/2
1.1


Inverse Functions

  • Definition of Inverse functions
  • Criteria for an Inverse of a function to exist


Week 1/2
1.1

Composition of Functions

  • Definition of a composition function
  • When function composition is defined


Week 1/2
1.1


Restrictions on Functions

  • Define the restriction of a function
  • Positive Square Root function


Week 2
1.2

Mathematical Induction

  • Well-ordering principal
  • Principal of Mathematical induction
  • The principal of Strong Induction


Week 2
1.3


Finite and Infinite Sets

  • Definition of finite and infinite sets
  • Uniqueness Theorem
  • If T is a subset of S and T is infinite, then S is also infinite.


Week 2
1.3

Countable Sets

  • Countable and Uncountable sets
  • The set of rational numbers is countable
  • Cantor's Theorem


Week 6/7
3.8


Implicit Differentiation

  • Assuming, for example, y is implicitly a function of x, find the derivative of y with respect to x.
  • Assuming, for example, y is implicitly a function of x, and given an equation relating y to x, find the derivative of y with respect to x.
  • Find the equation of a line tangent to an implicitly defined curve at a point.


Week 7
3.9

Derivatives of Exponential and Logarithmic Functions

  • Find the derivative of functions that involve exponential functions.
  • Find the derivative of functions that involve logarithmic functions.
  • Use logarithmic differentiation to find the derivative of functions containing combinations of powers, products, and quotients.


Week 7/8
4.1


Related Rates

  • Express changing quantities in terms of derivatives.
  • Find relationships among the derivatives in a given problem.
  • Use the chain rule to find the rate of change of one quantity that depends on the rate of change of other quantities.


Week 8
4.2


Linear Approximations and Differentials

  • Approximate the function value close to the center of the linear approximation using the linearization.
  • Given an expression to be evaluated/approximated, come up with the function and its linearization
  • Understand the formula for the differential; how it can be used to estimate the change in the dependent variable quantity, given the small change in the independent variable quantity.
  • Use the information above to estimate potential relative (and percentage) error


Week 8/9
4.3


Maxima and Minima

  • Know the definitions of absolute and local extrema.
  • Know what a critical point is and locate it (them).
  • Use the Extreme Value Theorem to find the absolute extrema of a continuous function on a closed interval.


Week 9
4.4


Mean Value Theorem

  • Determine if the MVT applies given a function on an interval.
  • Find c in the conclusion of the MVT (if algebraically feasible)
  • Know the first 3 Corollaries of MVT (especially the 3rd)


Week 9
4.5


Derivatives and the Shape of a Graph

  • Use the First Derivative Test to find intervals on which the function is increasing and decreasing and the local extrema and their type
  • Use the Concavity Test (aka the Second Derivative Test for Concavity) to find the intervals on which the function is concave up and down, and point(s) of inflection
  • Understand the shape of the graph, given the signs of the first and second derivatives.


Week 10
4.7


Applied Optimization Problems


  • Set up a function to be optimized and find the value(s) of the independent variable which provide the optimal solution.


Week 10
4.8


L’Hôpital’s Rule

  • Identify indeterminate forms produced by quotients, products, subtractions, and powers, and apply L’Hôpital’s rule in each case.
  • Recognize when to apply L’Hôpital’s rule.


Week 11
4.10


Antiderivatives

  • Find the general antiderivative of a given function.
  • Explain the terms and notation used for an indefinite integral.
  • State the power rule for integrals.
  • Use anti-differentiation to solve simple initial-value problems.


Week 11/12
5.1

Approximating Areas

  • Calculate sums and powers of integers.
  • Use the sum of rectangular areas to approximate the area under a curve.
  • Use Riemann sums to approximate area.


Week 12
5.2

The Definite Integral

  • State the definition of the definite integral.
  • Explain the terms integrand, limits of integration, and variable of integration.
  • Explain when a function is integrable.
  • Rules for the Definite Integral.
  • Describe the relationship between the definite integral and net area.
  • Use geometry and the properties of definite integrals to evaluate them.
  • Calculate the average value of a function.


Week 12/13
5.3

The Fundamental Theorem of Calculus

  • Describe the meaning of the Mean Value Theorem for Integrals.
  • State the meaning of the Fundamental Theorem of Calculus, Part 1.
  • Use the Fundamental Theorem of Calculus, Part 1, to evaluate derivatives of integrals.
  • State the meaning of the Fundamental Theorem of Calculus, Part 2.
  • Use the Fundamental Theorem of Calculus, Part 2, to evaluate definite integrals.
  • Explain the relationship between differentiation and integration.