Difference between revisions of "MAT2233"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
(Began table of topics)
 
 
(34 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 +
 +
A comprehensive list of all undergraduate math courses at UTSA can be found [https://catalog.utsa.edu/undergraduate/coursedescriptions/mat/  here].
 +
 +
The Wikipedia summary of [https://en.wikipedia.org/wiki/Linear_algebra  Linear Algebra and its history].
 +
 
==Topics List==
 
==Topics List==
 
{| class="wikitable sortable"
 
{| class="wikitable sortable"
! Date !! Sections !! Topics !! Prerequisite Skills !! Student Learning Outcomes
+
! Date !! Sections from Lay !! Sections from Bretscher !! Topics !! Prerequisite Skills !! Student Learning Outcomes
  
 
|-   
 
|-   
 +
  
|Week 1/2
+
|Week 1
  
 
||
 
||
  
 
<div style="text-align: center;">1.1 and 1.2</div>
 
<div style="text-align: center;">1.1 and 1.2</div>
 +
 +
||
 +
 +
<div style="text-align: center;">1.1</div>
 +
 +
||
 +
       
 +
[[Introduction to Linear Systems of Equations]]
 +
 +
||
 +
 +
* Adding equations and multiplying equations by constants <!-- 1073-Mod 12.1 --> 
 +
* [[Solving Equations and Inequalities]] <!-- 1073-Mod R --> 
 +
 +
||
 +
 +
* Using elimination to find solutions of linear systems
 +
* The Geometrical interpretation of solutions to linear systems
 +
 +
|-
 +
 +
 +
|Week&nbsp;2
 +
 +
||
 +
 +
<div style="text-align: center;">1.3, 1.4, and 1.5</div>
 +
 +
||
 +
 +
<div style="text-align: center;">1.2 and 1.3</div>
  
 
||
 
||
 
          
 
          
[[Limit_of_a_function|Systems of Linear Equations]]  
+
[[Vectors and Matrices]]
 +
 
 +
[[Gauss-Jordan Elimination]]  
  
 
||
 
||
  
* Algebraic operations on equations
+
* [[Introduction to Linear Systems of Equations]] <!-- 2233-1.1 & 1.2 --> 
* Basic matrices
+
* [[Linear Equations|Equation for a line]] <!-- 1073-Mod R --> 
  
 
||
 
||
  
* Systems of Linear Equations
+
* Vectors and vector addition
* Row Reduction and Echelon Forms
+
* Matrix notation
 +
* The Gauss-Jordan method for solving a linear system of equation
 +
* The rank of a matrix
 +
* Sums of Matrices
 +
* The product Ax (where A is a matrix and x is a vector)
 +
* The Dot product
 +
* Linear Combinations
  
  
Line 29: Line 74:
  
  
|Week&nbsp;3/
+
|Week&nbsp;3
 +
 
 +
||
 +
 
 +
<div style="text-align: center;">2.1</div>
  
 
||
 
||
  
<div style="text-align: center;">1.3, 1.4 and 1.5</div>
+
<div style="text-align: center;">2.3</div>
  
 
||
 
||
 
    
 
    
 +
[[Matrix Algebra and Matrix Multiplication]]
 +
 +
||
 +
 +
* [[Range of a Function]] <!-- 1073-Mod 1.2-> 
 +
* [[Vectors and Matrices]], [[Gauss-Jordan Elimination]]  <!-- 2233-1.3--> 
 +
* [[Transformations of Functions]]  <!-- 1073-Mod 6 --> 
 +
 +
||
 +
 +
* Matrix Operations
 +
* Matrix products by columns
 +
* Matrix products using the dot product
 +
 +
|-
 +
 +
 +
 +
|Week&nbsp;3 
 +
 +
||
  
[[Linear_Transformations|Linear Transformations]]
+
<div style="text-align: center;">2.2 and 2.3</div>
  
 
||
 
||
  
* Basics of functions
+
<div style="text-align: center;">2.4</div>
* Inverse functions and the identity function
 
* Vectors and the Inner product
 
  
 +
||
 +
 
 +
[[The Inverse of a Linear Transformation]]
  
 
||
 
||
  
 +
* [[Matrix Algebra and Matrix Multiplication]]  <!-- 2233-2.3-->
 +
* [[Inverse functions and the identity function|Inverse Functions]] <!-- 1073-7.2-->
 +
* [[Introduction to Linear Systems of Equations]] <!-- 2233-1.1 & 1.2 --> 
 +
 +
||
  
* Vector Equations
+
* The Identity matrix
* The Matrix Equation Ax = b
+
* The Inverse of a Matrix
* Solution Sets of Linear Systems
+
* Various characterizations for an invertible matrix
  
  
Line 58: Line 134:
  
  
|Week&nbsp;2/3
+
 
 +
 
 +
|Week&nbsp;
 +
 
 +
||
 +
 
 +
<div style="text-align: center;">1.8 and 1.9</div>
 +
 
 +
||
 +
 
 +
<div style="text-align: center;">2.1</div>
 +
 
 +
||
 +
 
 +
[[Introduction to Linear Transformations]]
 +
 
 +
||
 +
 
 +
* [[Introduction to Linear Systems of Equations]] <!-- 2233-1.1 & 1.2 -->
 +
* [[Vectors and Matrices]], [[Gauss-Jordan Elimination]]  <!-- 1073-7.2-->
 +
* [[Transformations of Functions]]  <!-- 1073-Mod 6 --> 
  
 
||
 
||
  
<div style="text-align: center;">2.4</div>
+
* Linear Transformations
 +
* Requirements for a transformation to be linear
 +
 
 +
|-
 +
 
 +
|Week&nbsp;5 
 +
 
 +
||
 +
 
 +
<div style="text-align: center;">1.7, 2.8, and 2.9</div>
 +
 
 +
||
 +
 
 +
<div style="text-align: center;">3.2</div>
  
 
||
 
||
 
    
 
    
[[|]]  
+
[[Subspaces of Rⁿ and Linear Independence]]
 +
 
 +
||
 +
 
 +
* [[Matrix Algebra and Matrix Multiplication]] <!-- 2233-2.3-->
 +
* [[The Inverse of a Linear Transformation]]
 +
 
 +
||
 +
 
 +
* Definition of a subspace of Rⁿ
 +
* Defining linear independence for a set of vectors
 +
* Definition of a basis for a subspace
 +
 
 +
 
 +
|-
 +
 
 +
|Week&nbsp;6 
 +
 
 +
||
 +
 
 +
<div style="text-align: center;">4.1</div>
 +
 
 +
||
 +
 
 +
<div style="text-align: center;">4.1</div>
  
 +
||
 +
 
 +
[[Introduction to Vector Spaces]]
  
 
||
 
||
  
 +
* [[Matrix Algebra and Matrix Multiplication]]  <!-- 2233-2.3-->
 +
* [[Subspaces of Rⁿ and Linear Independence]]
  
 
||
 
||
  
 +
* Definition of a vector space(or linear space)
 +
* Subspaces of vector spaces
 +
* Linear combinations and bases for vector spaces
 +
* Examples of vector spaces of functions
  
  
Line 79: Line 221:
  
  
|Week&nbsp;   
+
 
 +
|Week&nbsp;6  
 +
 
 +
||
 +
 
 +
<div style="text-align: center;">4.2</div>
  
 
||
 
||
  
<div style="text-align: center;"> </div>
+
<div style="text-align: center;">3.1</div>
  
 
||
 
||
 
    
 
    
[[]]  
+
[[The Column Space and Nullspace of a Linear Transformation]]
 +
 
 +
||
 +
 
 +
* [[Introduction to Linear Transformations ]]
 +
* [[Range of a Function]] <!-- 1073- mod 1.2-->
 +
* [[The Inverse of a Linear Transformation]]  
  
 
||
 
||
  
 +
* The image (or column space) of a linear transformation
 +
* The kernel (or nullspace) of a linear transformation
 +
* Properties of the kernel
  
 +
 +
|-
 +
 +
 +
|Week&nbsp;7 
 +
 +
||
 +
 +
<div style="text-align: center;">4.3 and 4.5</div>
 +
 +
||
 +
 +
<div style="text-align: center;">3.3 and 4.1</div>
  
 
||
 
||
 +
 
 +
[[The Dimension of a Vector Space]]
  
 +
||
  
 +
* [[Introduction to Vector Spaces]]
 +
* [[Subspaces of Rⁿ and Linear Independence]]
  
  
 
||
 
||
 +
 +
* The number of vectors in a basis of R<sup>n</sup>
 +
* Dimension of a subspace in Rⁿ
 +
* The dimension of a vector space
 +
* The dimension of the nullspace (or kernel) and the column space (or image)
 +
* The Rank-nullity Theorem
 +
 +
 +
|-
 +
 +
 +
|- 
 +
 +
 +
|Week&nbsp;8
 +
 +
||
 +
 +
<div style="text-align: center;">6.1 and 6.2</div>
 +
 +
||
 +
 +
<div style="text-align: center;">Appendix A and 5.1</div>
 +
 +
||
 +
       
 +
[[Dot Products and Orthogonality]]
 +
 +
||
 +
 +
* [[The Dimension of a Vector Space]]
 +
* [[Subspaces of Rⁿ and Linear Independence]]
 +
 +
||
 +
 +
* Orthogonal vectors
 +
* Length (or magnitude or norm) of a vector
 +
* Unit vectors
 +
* Orthonormal vectors
 +
* Orthogonal projections
 +
* Orthogonal complements
 +
* Cauchy-Schwarz inequality
 +
* The angle between vectors
 +
 +
|-
 +
 +
 +
|- 
 +
 +
 +
|Week&nbsp;9
 +
 +
||
 +
 +
<div style="text-align: center;">6.3 and 6.4</div>
 +
 +
||
 +
 +
<div style="text-align: center;">5.2 and 5.3</div>
 +
 +
||
 +
       
 +
<p> [[Orthonormal Bases and the Gram-Schmidt Process]] </p>
 +
<p> [[Orthogonal Transformations and Orthogonal Matrices]] </p>
 +
 +
||
 +
 +
* [[Subspaces of Rⁿ and Linear Independence]] 
 +
* [[Dot Products and Orthogonality]]
 +
 +
||
 +
 +
* Orthogonal transformations
 +
* Orthonormal Bases
 +
* Orthogonal matrices
 +
* The transpose of a matrix
 +
* The Gram-Schmidt Process
 +
* QR factorization
 +
 +
|- 
 +
 +
 +
|Week&nbsp;10
 +
 +
||
 +
 +
<div style="text-align: center;">6.5 and 6.6</div>
 +
 +
||
 +
 +
<div style="text-align: center;">5.4</div>
 +
 +
||
 +
       
 +
[[The Least-squares Solution]]
 +
 +
||
 +
 +
* [[Dot Products and Orthogonality]] 
 +
* [[The Column Space and Nullspace of a Linear Transformation]]
 +
 +
||
 +
 +
* The orthogonal complement of the image is equal to the left nullspace (or kernel of the transpose) for all matrices
 +
* The least-squares solution for a linear system
 +
* Data fitting using the least-squares solution
 +
 +
 +
|-
 +
 +
 +
 +
|Week&nbsp;11
 +
 +
||
 +
 +
<div style="text-align: center;">3.1 and 3.2</div>
 +
 +
||
 +
 +
<div style="text-align: center;">6.1 and 6.2</div>
 +
 +
||
 +
       
 +
<p> [[Introduction to Determinants]] </p>
 +
<p> [[Cramer's Rule]] </p>
 +
 +
||
 +
 +
* [[Orthonormal Bases and the Gram-Schmidt Process]] 
 +
* [[The Inverse of a Linear Transformation]]
 +
* [[Sigma Notation]]
 +
 +
||
 +
 +
* The determinant of 2 by 2 and 3 by 3 matrices
 +
* The determinant of a general n by n matrix
 +
* The determinant of a triangular matrix
 +
* Properties of the determinant
 +
* The determinant of the transpose
 +
* Invertibility and the determinant
 +
 +
 +
 +
|-
 +
 +
 +
|Week&nbsp;12
 +
 +
||
 +
 +
<div style="text-align: center;">3.3</div>
 +
 +
||
 +
 +
<div style="text-align: center;">6.3</div>
 +
 +
||
 +
       
 +
[[The Geometric Interpretation of the Determinant]]
 +
 +
||
 +
 +
* [[Orthonormal Bases and the Gram-Schmidt Process]] 
 +
* [[Introduction to Determinants]]
 +
* [[The Inverse of a Linear Transformation]]
 +
 +
||
 +
 +
 +
* Cramer's Rule
 +
* The adjoint and inverse of a matrix
 +
* The area of a parallelogram and the volume of a parallelepiped
 +
 +
 +
|-
 +
 +
 +
|Week&nbsp;13
 +
 +
||
 +
 +
<div style="text-align: center;">The beginning of 5.3 as well as the sections 5.1 and 5.2</div>
 +
 +
||
 +
 +
<div style="text-align: center;">7.1, 7.2 and the beginning of 7.3</div>
 +
 +
||
 +
       
 +
[[Eigenvalues and Eigenvectors]]
 +
 +
||
 +
 +
* [[Introduction to Determinants]]   
 +
* [[The Column Space and Nullspace of a Linear Transformation]]
 +
* [[The Inverse of a Linear Transformation]]
 +
 +
||
 +
 +
* The requirement for a matrix to be diagonalizable
 +
* Definition of an eigenvector
 +
* The characteristic equation used to find eigenvalues
 +
* Eigenvalues of a triangular matrix
 +
* Eigenspaces for specific eigenvalues
 +
 +
 +
|-
 +
 +
 +
|Week&nbsp;14
 +
 +
||
 +
 +
<div style="text-align: center;">5.3 and 5.4</div>
 +
 +
||
 +
 +
<div style="text-align: center;">3.4 and 7.3</div>
 +
 +
||
 +
       
 +
[[Diagonalization of Matrices]]
 +
 +
||
 +
 +
* [[Eigenvalues and Eigenvectors]] 
 +
* [[The Column Space and Nullspace of a Linear Transformation]]
 +
 +
||
 +
 +
* Similar matrices
 +
* Diagonalization in terms of linearly independent eigenvectors
 +
* Algebraic and geometric multiplicity for a specific eigenvalue
 +
* The strategy for diagonalization
 +
  
  
 
|-
 
|-

Latest revision as of 12:58, 29 January 2022

A comprehensive list of all undergraduate math courses at UTSA can be found here.

The Wikipedia summary of Linear Algebra and its history.

Topics List

Date Sections from Lay Sections from Bretscher Topics Prerequisite Skills Student Learning Outcomes
Week 1
1.1 and 1.2
1.1

Introduction to Linear Systems of Equations

  • Using elimination to find solutions of linear systems
  • The Geometrical interpretation of solutions to linear systems
Week 2
1.3, 1.4, and 1.5
1.2 and 1.3

Vectors and Matrices

Gauss-Jordan Elimination

  • Vectors and vector addition
  • Matrix notation
  • The Gauss-Jordan method for solving a linear system of equation
  • The rank of a matrix
  • Sums of Matrices
  • The product Ax (where A is a matrix and x is a vector)
  • The Dot product
  • Linear Combinations


Week 3
2.1
2.3

Matrix Algebra and Matrix Multiplication

  • Matrix Operations
  • Matrix products by columns
  • Matrix products using the dot product
Week 3
2.2 and 2.3
2.4

The Inverse of a Linear Transformation

  • The Identity matrix
  • The Inverse of a Matrix
  • Various characterizations for an invertible matrix


Week 4
1.8 and 1.9
2.1

Introduction to Linear Transformations

  • Linear Transformations
  • Requirements for a transformation to be linear
Week 5
1.7, 2.8, and 2.9
3.2

Subspaces of Rⁿ and Linear Independence

  • Definition of a subspace of Rⁿ
  • Defining linear independence for a set of vectors
  • Definition of a basis for a subspace


Week 6
4.1
4.1

Introduction to Vector Spaces

  • Definition of a vector space(or linear space)
  • Subspaces of vector spaces
  • Linear combinations and bases for vector spaces
  • Examples of vector spaces of functions


Week 6
4.2
3.1

The Column Space and Nullspace of a Linear Transformation

  • The image (or column space) of a linear transformation
  • The kernel (or nullspace) of a linear transformation
  • Properties of the kernel


Week 7
4.3 and 4.5
3.3 and 4.1

The Dimension of a Vector Space


  • The number of vectors in a basis of Rn
  • Dimension of a subspace in Rⁿ
  • The dimension of a vector space
  • The dimension of the nullspace (or kernel) and the column space (or image)
  • The Rank-nullity Theorem


Week 8
6.1 and 6.2
Appendix A and 5.1

Dot Products and Orthogonality

  • Orthogonal vectors
  • Length (or magnitude or norm) of a vector
  • Unit vectors
  • Orthonormal vectors
  • Orthogonal projections
  • Orthogonal complements
  • Cauchy-Schwarz inequality
  • The angle between vectors
Week 9
6.3 and 6.4
5.2 and 5.3

Orthonormal Bases and the Gram-Schmidt Process

Orthogonal Transformations and Orthogonal Matrices

  • Orthogonal transformations
  • Orthonormal Bases
  • Orthogonal matrices
  • The transpose of a matrix
  • The Gram-Schmidt Process
  • QR factorization
Week 10
6.5 and 6.6
5.4

The Least-squares Solution

  • The orthogonal complement of the image is equal to the left nullspace (or kernel of the transpose) for all matrices
  • The least-squares solution for a linear system
  • Data fitting using the least-squares solution


Week 11
3.1 and 3.2
6.1 and 6.2

Introduction to Determinants

Cramer's Rule

  • The determinant of 2 by 2 and 3 by 3 matrices
  • The determinant of a general n by n matrix
  • The determinant of a triangular matrix
  • Properties of the determinant
  • The determinant of the transpose
  • Invertibility and the determinant


Week 12
3.3
6.3

The Geometric Interpretation of the Determinant


  • Cramer's Rule
  • The adjoint and inverse of a matrix
  • The area of a parallelogram and the volume of a parallelepiped


Week 13
The beginning of 5.3 as well as the sections 5.1 and 5.2
7.1, 7.2 and the beginning of 7.3

Eigenvalues and Eigenvectors

  • The requirement for a matrix to be diagonalizable
  • Definition of an eigenvector
  • The characteristic equation used to find eigenvalues
  • Eigenvalues of a triangular matrix
  • Eigenspaces for specific eigenvalues


Week 14
5.3 and 5.4
3.4 and 7.3

Diagonalization of Matrices

  • Similar matrices
  • Diagonalization in terms of linearly independent eigenvectors
  • Algebraic and geometric multiplicity for a specific eigenvalue
  • The strategy for diagonalization