Difference between revisions of "MAT1193"
Rylee.taylor (talk | contribs) m (Fixing links) |
m (→Calculus for the Biosciences: Making Use of Bullets consistent) |
||
(31 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
+ | == Calculus for the Biosciences == | ||
+ | |||
+ | [https://catalog.utsa.edu/search/?P=MAT%201193 MAT 1193 Calculus for the Biosciences]. (3-0) 3 Credit Hours. (TCCN = MATH 2313) | ||
+ | |||
+ | Prerequisite: [[MAT1093|MAT 1093]] or an equivalent course or satisfactory performance on a placement examination. An introduction to calculus is presented using discrete-time dynamical systems and differential equations to model fundamental processes important in biological and biomedical applications. Specific topics to be covered are limits, continuity, differentiation, antiderivatives, definite and indefinite integrals, the fundamental theorem of calculus, differential equations, and the phase-plane. (Formerly MAT 1194. Credit can be earned for only one of the following: MAT 1193, MAT 1194, or MAT 1214.) May apply toward the Core Curriculum requirement in Mathematics. Generally offered: Fall, Spring, Summer. Course Fees: DL01 $72; LRC1 $12; LRS1 $45; STSI $21. | ||
+ | |||
+ | |||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
− | ! Date | + | ! Date !! Topic !! Pre-requisite !! Student Learning Outcome |
|- | |- | ||
− | | Week 1 || | + | | Week 1 || Review of [[Functions]] and [[Slope|Change]] |
|| | || | ||
− | * Basic graphing skills | + | * [[Basic graphing skills]] |
− | * The idea of a function | + | * [[The idea of a function]] |
* Graphs of elementary functions (lines, parabola) | * Graphs of elementary functions (lines, parabola) | ||
* Understanding of slope | * Understanding of slope | ||
− | * Periodic functions | + | * Periodic functions |
|| | || | ||
* Define a function and connect to a real-world dynamical model | * Define a function and connect to a real-world dynamical model | ||
− | * | + | * Identify the parts of linear functions (slope, y-intercept). |
− | * | + | * Demonstrate how to manipulate fractions. |
− | * | + | * Identify power functions and polynomials. |
− | * | + | * Identify exponential functions and their graphs in terms of exponential growth/decay. |
− | * Analyze graphs of the sine and cosine by | + | * Identify logarithmic functions, graph and solve equations with log properties. |
+ | * Analyze graphs of the sine and cosine by recognizing amplitude and period. | ||
+ | * Identify and compute composite functions. | ||
|- | |- | ||
− | | Week 2 || | + | | Week 2 || [[Derivatives Rates of Change|Instantaneous Rate of Change]] |
|| | || | ||
* Evaluating functions | * Evaluating functions | ||
Line 25: | Line 34: | ||
* Equations of a line (slope-intercept, point-slope) | * Equations of a line (slope-intercept, point-slope) | ||
|| | || | ||
− | * | + | * Compute the average rate of change (ARC). |
+ | * Compute the instantaneous rate of change (IRC) | ||
+ | * Comparing and contrasting ARC with IRC | ||
* Defining velocity using the idea of a limit | * Defining velocity using the idea of a limit | ||
* Visualizing the limit with tangent lines | * Visualizing the limit with tangent lines | ||
+ | |- | ||
+ | | Week 3 || | ||
+ | * [[The Limit Laws]] | ||
+ | * [[The Limit of a Function]] | ||
+ | || | ||
+ | '''Example''' | ||
+ | || | ||
* Recognize graphs of derivatives from original function | * Recognize graphs of derivatives from original function | ||
* Estimate the derivative of a function given table data and graphically | * Estimate the derivative of a function given table data and graphically | ||
* Interpret the derivative with units and alternative notations (Leibniz) | * Interpret the derivative with units and alternative notations (Leibniz) | ||
* Use derivative to estimate value of a function | * Use derivative to estimate value of a function | ||
− | |||
− | |||
− | |||
* Use the limit definition to define the derivative at a particular point and to define the derivative function | * Use the limit definition to define the derivative at a particular point and to define the derivative function | ||
− | * | + | * Distinguish the definition of continuity of a function |
* Apply derivatives to biological functions | * Apply derivatives to biological functions | ||
|- | |- | ||
− | | Week 4 | + | | Week 4 & 5 || [[Derivative Formulas]] |
|| | || | ||
* Equations of lines | * Equations of lines | ||
− | * Composite functions | + | * [[Limits]] |
+ | * [[Composite functions]] | ||
+ | * [[Exponential]] | ||
+ | * [[Logarithmic]] | ||
+ | * [[Trigonometric]] | ||
+ | * [[Applications of Derivatives|Applications]] | ||
|| | || | ||
* Use constant formula and power formula to differentiate functions along with the sum and difference rule | * Use constant formula and power formula to differentiate functions along with the sum and difference rule | ||
Line 49: | Line 69: | ||
* Differentiate composite functions using the chain rule | * Differentiate composite functions using the chain rule | ||
* Differentiate products and quotients | * Differentiate products and quotients | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
* Differentiate trigonometric functions | * Differentiate trigonometric functions | ||
* Applications of trigonometric function derivatives | * Applications of trigonometric function derivatives | ||
|- | |- | ||
− | | Week 6 || | + | | Week 6 || [[Applications of Derivatives]] |
|| | || | ||
− | * Local & Global Maxima & Minima | + | * [[Maxima and Minima|Local & Global Maxima & Minima]] |
* Concavity | * Concavity | ||
|| | || | ||
Line 71: | Line 83: | ||
* Apply max and min techniques in real world applications in the field of Biology (logistic growth) | * Apply max and min techniques in real world applications in the field of Biology (logistic growth) | ||
|- | |- | ||
− | | Week 7 | + | | Week 7 || [[Accumulated Change]] |
|| | || | ||
* Distance formula | * Distance formula | ||
Line 80: | Line 92: | ||
* Apply concepts of finding total change with Riemann Sums | * Apply concepts of finding total change with Riemann Sums | ||
|- | |- | ||
− | | Week | + | | Week 7 || [[The Definite Integral]] |
+ | || | ||
+ | * Summation formulas | ||
+ | || | ||
+ | * Approximate total change from rate of change | ||
+ | * Computing area with Riemann Sums | ||
+ | * Apply concepts of finding total change with Riemann Sums | ||
+ | |||
+ | |- | ||
+ | | Week 8 || [[Antiderivatives]] || | ||
+ | * Basics in graphing | ||
|| | || | ||
+ | * Use the limit formula to compute a definite integral | ||
* Be able to analyze area under the curve with antiderivatives graphically and numerically | * Be able to analyze area under the curve with antiderivatives graphically and numerically | ||
* Use formulas for finding antiderivatives of constants and powers | * Use formulas for finding antiderivatives of constants and powers | ||
+ | * Use formulas for finding antiderivatives of exponential and logarithm functions | ||
* Use formulas for finding antiderivatives of trigonometric functions | * Use formulas for finding antiderivatives of trigonometric functions | ||
|- | |- | ||
− | | Week 9 || | + | | Week 9 || [[The Fundamental Theorem of Calculus]] || |
+ | *Average formula | ||
|| | || | ||
* Use the limit formula to compute a definite integral | * Use the limit formula to compute a definite integral | ||
* Compute area with the fundamental theorem of calculus (FTC) | * Compute area with the fundamental theorem of calculus (FTC) | ||
− | + | ||
− | |||
|- | |- | ||
− | | Week 10 || | + | | Week 10 || [[Applications of Integrals]] || '''Example''' || |
+ | * Solve various biology applications using the fundamental theorem of calculus | ||
|- | |- | ||
− | | Week | + | | Week 11|| [[Integration by Substitution]] || '''Example''' || |
+ | * Applying integration by substitution formulas | ||
|- | |- | ||
− | | Week | + | | Week 12|| [[Integration by Parts]] || '''Example''' |
|| | || | ||
* Applying integration by integration by parts formulas | * Applying integration by integration by parts formulas | ||
* Recognize which integration formulas to use | * Recognize which integration formulas to use | ||
|- | |- | ||
− | | Week | + | | Week 13|| [[Differential Equations (Mathematical Modeling)]] || |
+ | * Word problem setup and understanding of mathematical models | ||
|| | || | ||
− | * | + | * Demonstrate how to take information to set up a mathematical model |
* Examine the basic parts of differential equations | * Examine the basic parts of differential equations | ||
|- | |- | ||
− | | Week | + | | Week 14|| [[Differential Equations]] || |
+ | * Graphing and factoring | ||
|| | || | ||
* Examine differential equations graphically with slope fields | * Examine differential equations graphically with slope fields | ||
* Use separation of variables for solving differential equations | * Use separation of variables for solving differential equations | ||
|- | |- | ||
− | | Week | + | | Week 15|| [[Differential Equations (Mathematical Modeling)|Differential Equations Applications]] || |
+ | * [[Exponential functions]] | ||
|| | || | ||
* Apply differential equations to exponential growth & decay functions for population models | * Apply differential equations to exponential growth & decay functions for population models | ||
* Apply differential equations to surge functions for drug models | * Apply differential equations to surge functions for drug models | ||
+ | * Modeling the spread of a disease | ||
|} | |} |
Latest revision as of 14:07, 15 June 2023
Calculus for the Biosciences
MAT 1193 Calculus for the Biosciences. (3-0) 3 Credit Hours. (TCCN = MATH 2313)
Prerequisite: MAT 1093 or an equivalent course or satisfactory performance on a placement examination. An introduction to calculus is presented using discrete-time dynamical systems and differential equations to model fundamental processes important in biological and biomedical applications. Specific topics to be covered are limits, continuity, differentiation, antiderivatives, definite and indefinite integrals, the fundamental theorem of calculus, differential equations, and the phase-plane. (Formerly MAT 1194. Credit can be earned for only one of the following: MAT 1193, MAT 1194, or MAT 1214.) May apply toward the Core Curriculum requirement in Mathematics. Generally offered: Fall, Spring, Summer. Course Fees: DL01 $72; LRC1 $12; LRS1 $45; STSI $21.
Date | Topic | Pre-requisite | Student Learning Outcome |
---|---|---|---|
Week 1 | Review of Functions and Change |
|
|
Week 2 | Instantaneous Rate of Change |
|
|
Week 3 |
Example |
| |
Week 4 & 5 | Derivative Formulas |
|
|
Week 6 | Applications of Derivatives |
|
|
Week 7 | Accumulated Change |
|
|
Week 7 | The Definite Integral |
|
|
Week 8 | Antiderivatives |
|
|
Week 9 | The Fundamental Theorem of Calculus |
|
|
Week 10 | Applications of Integrals | Example |
|
Week 11 | Integration by Substitution | Example |
|
Week 12 | Integration by Parts | Example |
|
Week 13 | Differential Equations (Mathematical Modeling) |
|
|
Week 14 | Differential Equations |
|
|
Week 15 | Differential Equations Applications |
|