Difference between revisions of "MAT2233"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
(Began second table of topics ( up to inverses))
 
(22 intermediate revisions by 5 users not shown)
Line 15: Line 15:
 
||
 
||
  
<div style="text-align: center;">1.1, 1.2</div>
+
<div style="text-align: center;">1.1 and 1.2</div>
  
 
||
 
||
Line 27: Line 27:
 
||
 
||
  
* [[Systems of Equations in Two Variables| Adding and multiplying equations by constants]] <!-- 1073-Mod 12.1 -->   
+
* Adding equations and multiplying equations by constants <!-- 1073-Mod 12.1 -->   
* [[Solving Equations]] <!-- 1073-Mod R -->   
+
* [[Solving Equations and Inequalities]] <!-- 1073-Mod R -->   
  
 
||
 
||
Line 50: Line 50:
 
||
 
||
 
          
 
          
[[Vectors, Matrices, and Guass-Jordan Elimination]]  
+
[[Vectors and Matrices]]
 +
 
 +
[[Gauss-Jordan Elimination]]  
  
 
||
 
||
Line 59: Line 61:
 
||
 
||
  
* Vectors and vector spaces
+
* Vectors and vector addition
 
* Matrix notation
 
* Matrix notation
* The Guass-Jordan method for solving a linear system of equation
+
* The Gauss-Jordan method for solving a linear system of equation
 
* The rank of a matrix
 
* The rank of a matrix
 
* Sums of Matrices
 
* Sums of Matrices
Line 72: Line 74:
  
  
|Week&nbsp;3  
+
|Week&nbsp;3
 
 
||
 
 
 
<div style="text-align: center;">1.8 and 1.9</div>
 
 
 
||
 
 
 
<div style="text-align: center;">2.1</div>
 
 
 
||
 
 
 
[[Introduction to Linear Transformations]]
 
 
 
||
 
 
 
* [[Introduction to Linear Systems of Equations]] <!-- 2233-1.1 & 1.2 -->
 
* [[Vectors, Matrices, and Guass-Jordan Elimination]]  <!-- 1073-7.2-->
 
* [[Transformations of Functions]]  <!-- 1073-Mod 6 --> 
 
 
 
||
 
 
 
* Linear Transformation
 
* Requirements for a transformation to be linear
 
 
 
 
 
|-
 
 
 
|Week&nbsp;3 
 
  
 
||
 
||
Line 117: Line 91:
  
 
* [[Range of a Function]] <!-- 1073-Mod 1.2->   
 
* [[Range of a Function]] <!-- 1073-Mod 1.2->   
* [[Vectors, Matrices, and Guass-Jordan Elimination]]  <!-- 2233-1.3-->   
+
* [[Vectors and Matrices]], [[Gauss-Jordan Elimination]]  <!-- 2233-1.3-->   
 
* [[Transformations of Functions]]  <!-- 1073-Mod 6 -->   
 
* [[Transformations of Functions]]  <!-- 1073-Mod 6 -->   
  
Line 130: Line 104:
  
  
|Week&nbsp;4    
+
|Week&nbsp;3    
  
 
||
 
||
Line 154: Line 128:
 
* The Identity matrix
 
* The Identity matrix
 
* The Inverse of a Matrix
 
* The Inverse of a Matrix
* The Inverse of a Linear Transformation
 
 
* Various characterizations for an invertible matrix
 
* Various characterizations for an invertible matrix
  
Line 163: Line 136:
  
  
 +
|Week&nbsp;4 
  
|-
+
||
  
==Topics List B==
+
<div style="text-align: center;">1.8 and 1.9</div>
{| class="wikitable sortable"
 
! Date !! Sections !! Topics !! Prerequisite Skills !! Student Learning Outcomes
 
 
 
|-
 
 
 
|Week&nbsp;1
 
  
 
||
 
||
  
<div style="text-align: center;">1.1, 1.2</div>
+
<div style="text-align: center;">2.1</div>
  
 
||
 
||
       
+
 
[[Systems of Linear Equations]]  
+
[[Introduction to Linear Transformations]]  
  
 
||
 
||
  
* [[Systems of Equations in Two Variables| Adding and multiplying equations by constants]] <!-- 1073-Mod 12.1 -->
+
* [[Introduction to Linear Systems of Equations]] <!-- 2233-1.1 & 1.2 -->
* [[Solving Equations]] <!-- 1073-Mod R -->   
+
* [[Vectors and Matrices]], [[Gauss-Jordan Elimination]] <!-- 1073-7.2-->  
 +
* [[Transformations of Functions]] <!-- 1073-Mod 6 -->   
  
 
||
 
||
  
* Vectors and Matrices
+
* Linear Transformations
* Gauss-Jordan elimination
+
* Requirements for a transformation to be linear
  
 
|-
 
|-
  
 +
|Week&nbsp;5 
 +
 +
||
  
|Week&nbsp;2
+
<div style="text-align: center;">1.7, 2.8, and 2.9</div>
  
 
||
 
||
  
<div style="text-align: center;">1.3</div>
+
<div style="text-align: center;">3.2</div>
  
 
||
 
||
       
+
 
[[Solutions of Linear Systems]]  
+
[[Subspaces of Rⁿ and Linear Independence]]  
  
 
||
 
||
  
* [[Systems of Linear Equations|Gauss-Jordan elimination]] <!-- 2233-1.1 & 1.2 -->
+
* [[Matrix Algebra and Matrix Multiplication]] <!-- 2233-2.3-->  
* [[Linear Equations|Equation for a line]] <!-- 1073-Mod R --> 
+
* [[The Inverse of a Linear Transformation]]  
  
 
||
 
||
  
* Rank of a matrix
+
* Definition of a subspace of Rⁿ
* Matrix addition
+
* Defining linear independence for a set of vectors
* The product Ax (where A is a matrix and x is a vector)
+
* Definition of a basis for a subspace
* The Inner product
 
* Linear Combinations
 
  
  
 
|-
 
|-
  
 +
|Week&nbsp;6 
  
|Week&nbsp;
+
||
 +
 
 +
<div style="text-align: center;">4.1</div>
  
 
||
 
||
  
<div style="text-align: center;">2.1 and 2.2</div>
+
<div style="text-align: center;">4.1</div>
  
 
||
 
||
 
    
 
    
[[Linear Transformations]]  
+
[[Introduction to Vector Spaces]]
  
 
||
 
||
  
* [[Range of a Function]] <!-- 1073-Mod 1.2-> 
+
* [[Matrix Algebra and Matrix Multiplication]]  <!-- 2233-2.3-->  
* [[Solutions of Linear Systems| Matrix addition]]  <!-- 2233-1.3-->
+
* [[Subspaces of Rⁿ and Linear Independence]]  
* [[Transformations of Functions]] <!-- 1073-Mod 6 --> 
 
  
 
||
 
||
  
* Linear transformations and their properties
+
* Definition of a vector space(or linear space)
* Geometry of Linear Transformations (rotations, scalings and projections)
+
* Subspaces of vector spaces
 +
* Linear combinations and bases for vector spaces
 +
* Examples of vector spaces of functions
 +
 
  
 
|-
 
|-
  
  
|Week&nbsp;4 
 
 
||
 
 
<div style="text-align: center;"> 2.3 and 2.4</div>
 
  
||
+
|Week&nbsp;6 
 
 
[[Matrix Products and Inverses]]
 
  
 
||
 
||
  
* [[Solutions of Linear Systems| Linear Combinations]] <!-- 2233-1.3-->  
+
<div style="text-align: center;">4.2</div>
* [[Inverse functions and the identity function|Inverse Functions]] <!-- 1073-7.2-->
 
* [[Solutions of Linear Systems|Vectors and the Inner product]] <!-- 2233-1.3-->  
 
 
 
||
 
 
 
* Matrix Products (both inner product and row-by-column methods)
 
* The Inverses of a linear transform
 
 
 
 
 
|-
 
 
 
 
 
|Week&nbsp;6
 
  
 
||
 
||
Line 279: Line 234:
 
||
 
||
 
    
 
    
[[Image and Kernel of a Linear Transform]]  
+
[[The Column Space and Nullspace of a Linear Transformation]]  
  
 
||
 
||
  
* [[Solutions of Linear Systems]] <!-- 2233-1.3-->
+
* [[Introduction to Linear Transformations ]]
* [[Range of a Function|Image of a Function]] <!-- 1073-Mod 1.2 -->  
+
* [[Range of a Function]] <!-- 1073- mod 1.2-->  
* [[Kernel of a Function]] <!-- DNE (recommend 1073 Mod 1.2 or Modern Algebra) -->
+
* [[The Inverse of a Linear Transformation]]  
  
 
||
 
||
  
* The image of a Linear transformation
+
* The image (or column space) of a linear transformation
* The kernel of a linear transformation
+
* The kernel (or nullspace) of a linear transformation
* Span of a set of vectors
+
* Properties of the kernel
* Alternative characterizations of Invertible matrices
 
  
  
Line 298: Line 252:
  
  
 
+
|Week&nbsp;
|Week&nbsp;6
 
  
 
||
 
||
  
<div style="text-align: center;">3.2</div>
+
<div style="text-align: center;">4.3 and 4.5</div>
  
 
||
 
||
 
 
[[Linear Independence]]
 
  
||
+
<div style="text-align: center;">3.3 and 4.1</div>
 
* [[Solutions of Linear Systems]] <!-- 2233-1.3-->
 
* [[Image and Kernel of a Linear Transform]] <!-- 2233-3.1 -->
 
  
 
||
 
||
 
+
 
* Subspaces of R<sup>n</sup>
+
[[The Dimension of a Vector Space]]
* Redundant vectors and linear independence
 
* Characterizations of Linear Independence
 
 
 
 
 
|-
 
 
 
|Week&nbsp;6
 
  
 
||
 
||
  
<div style="text-align: center;">3.2</div>
+
* [[Introduction to Vector Spaces]]
 +
* [[Subspaces of Rⁿ and Linear Independence]]
  
||
 
 
 
[[Bases of Subspaces]]
 
 
||
 
 
* [[Linear Independence]] <!-- 2233-3.2-->
 
* [[Image and Kernel of a Linear Transform|The span of a set of vectors]] <!-- 2233-3.1 -->
 
  
 
||
 
||
  
* Bases and Linear independence
+
* The number of vectors in a basis of R<sup>n</sup>
* Basis of the image
+
* Dimension of a subspace in Rⁿ
* Basis and unique representation
+
* The dimension of a vector space
 +
* The dimension of the nullspace (or kernel) and the column space (or image)
 +
* The Rank-nullity Theorem
  
  
Line 348: Line 284:
  
  
|Week&nbsp;5
+
|
 
+
||
 
 
 
<div style="text-align: center;">3.3</div>
 
  
||
+
|Week&nbsp;8
 
 
[[The Dimension of a Subspace]]
 
  
 
||
 
||
  
* [[Range of a Function|Image of a Function]]  <!-- 1073-Mod 1.2 -->
+
<div style="text-align: center;">6.1 and 6.2</div>
* [[Bases and Linear Independence]] <!-- 2233-3.2 -->
 
* [[Linear transformations]] <!-- 2233-2.1-->  
 
  
 
||
 
||
  
* Dimension of the Image
+
<div style="text-align: center;">Appendix A and 5.1</div>
* Rank-nullity theorem
 
* Various bases in R<sup>n</sup>
 
 
 
 
 
|-
 
 
 
 
 
|Week&nbsp;7/8 
 
  
 
||
 
||
 
+
       
<div style="text-align: center;"> 3.4  </div>
+
[[Dot Products and Orthogonality]]
  
 
||
 
||
  
 
+
* [[The Dimension of a Vector Space]]  
[[Similar Matrices and Coordinates]]
+
* [[Subspaces of Rⁿ and Linear Independence]]  
 
 
||
 
 
 
* [[Bases of Subspaces]] <!-- 2233-3.2 -->
 
* '''[[Equivalence Relations]]''' <!-- DNE (recommend 1073-Mod R) -->
 
 
 
||
 
 
 
* Coordinates in a subspace of R<sup>n</sup>
 
* Similar matrices
 
* Diagonal matrices
 
  
 
||
 
||
  
 +
* Orthogonal vectors
 +
* Length (or magnitude or norm) of a vector
 +
* Unit vectors
 +
* Orthonormal vectors
 +
* Orthogonal projections
 +
* Orthogonal complements
 +
* Cauchy-Schwarz inequality
 +
* The angle between vectors
  
 
|-
 
|-
  
  
 +
|- 
 +
  
 
+
|Week&nbsp;9
|Week&nbsp;9  
 
  
 
||
 
||
  
<div style="text-align: center;"> 5.1</div>
+
<div style="text-align: center;">6.3 and 6.4</div>
  
 
||
 
||
 
 
[[Orthogonal Projections and Orthonormal Bases]]
 
  
||
+
<div style="text-align: center;">5.2 and 5.3</div>
 
 
* [[Parallel and Perpendicular Lines]] <!-- DNE (recommend 1093-2.1) -->  
 
* [[Absolute value function]]<!-- DNE (recommend 1073-Mod R) -->
 
* [[Trig. Functions: Unit Circle Approach]] <!-- 1093-2.2 -->
 
* [[Matrix Products and Inverses|Inner Products]] <!-- 2233-2.3 and 2.4 -->
 
* [[Bases and Linear Independence]] <!-- 2233-3.2 -->  
 
  
 
||
 
||
 
+
       
* Magnitude (or norm or length) of a vector
+
<p> [[Orthonormal Bases and the Gram-Schmidt Process]] </p>
* Unit Vectors
+
<p> [[Orthogonal Transformations and Orthogonal Matrices]] </p>
* Cauchy-Schwarz Inequality
 
* Orthonormal vectors
 
* Orthogonal complement
 
* Orthogonal Projection
 
* Orthonormal bases
 
* Angle between vectors
 
  
 
||
 
||
  
 
+
* [[Subspaces of Rⁿ and Linear Independence]] 
|-
+
* [[Dot Products and Orthogonality]]
 
 
 
 
|Week&nbsp;10
 
  
 
||
 
||
  
<div style="text-align: center;">5.2 </div>
+
* Orthogonal transformations
 +
* Orthonormal Bases
 +
* Orthogonal matrices
 +
* The transpose of a matrix
 +
* The Gram-Schmidt Process
 +
* QR factorization
  
||
+
|
 
+
[[Gram-Schmidt Process and QR Factorization]]
 
  
||
+
|Week&nbsp;10
 
 
* [[Orthogonal Projections and Orthonormal Bases|Unit vectors]] <!-- 2233-5.1 and 5.2 -->
 
* [[Matrix Products and Inverses|Inner Products]] <!-- 2233-2.3 and 2.4 -->
 
* [[Orthogonal Projections and Orthonormal Bases|Orthonormal Bases]] <!-- 2233-5.1 and 5.2 -->
 
* [[Bases and Linear Independence]]  <!-- 2233-3.2 -->
 
  
 
||
 
||
  
* Gram-Schmidt process
+
<div style="text-align: center;">6.5 and 6.6</div>
* QR Factorization
 
  
 
||
 
||
  
 
+
<div style="text-align: center;">5.4</div>
|-
 
 
 
 
 
|Week&nbsp;11
 
  
 
||
 
||
 
+
       
<div style="text-align: center;">5.3</div>
+
[[The Least-squares Solution]]  
 
 
||
 
 
 
[[Orthogonal Transformations and Orthogonal Matrices]]  
 
  
 
||
 
||
  
* [[Image and Kernel of a Linear Transform]] <!-- 2233-3.1 -->
+
* [[Dot Products and Orthogonality]]  
* [[Matrix Products and Inverses|Inner Products]] <!-- 2233-2.3 and 2.4 -->
+
* [[The Column Space and Nullspace of a Linear Transformation]]
* [[Orthogonal Projections and Orthonormal Bases]]  
 
  
 
||
 
||
  
* Orthogonal Transformations
+
* The orthogonal complement of the image is equal to the left nullspace (or kernel of the transpose) for all matrices
* Properties of Othogonal Transformations
+
* The least-squares solution for a linear system
* Transpose of a Matrix
+
* Data fitting using the least-squares solution
* The matrix of an Orthogonal Projection
 
 
 
||
 
  
  
Line 496: Line 384:
  
  
|Week&nbsp;11
 
 
||
 
 
<div style="text-align: center;">5.3</div>
 
  
||
+
|Week&nbsp;11
 
 
[[Least Squares]]
 
  
 
||
 
||
  
* [[Linear transformations]] <!-- 2233-2.1-->
+
<div style="text-align: center;">3.1 and 3.2</div>
* [[Orthogonal Transformations and Orthogonal Matrices]] <!-- 2233-5.3 -->
 
* [[Orthogonal Projections and Orthonormal Bases|Orthogonal Projections]] <!-- 2233-5.3 -->
 
 
 
||
 
 
 
* The Least Squares Solution
 
* The Normal Equation
 
* Another matrix for an Orthogonal Projection
 
 
 
||
 
 
 
 
 
|-
 
|Week&nbsp;11
 
  
 
||
 
||
Line 529: Line 396:
  
 
||
 
||
 
+
       
[[Determinants]]  
+
<p> [[Introduction to Determinants]] </p>
 +
<p> [[Cramer's Rule]] </p>
  
 
||
 
||
  
* [[Summation Notation]] <!-- DNE (recommend before Riemann Sums in 1214) -->
+
* [[Orthonormal Bases and the Gram-Schmidt Process]]  
* [[Sgn Function]] <!-- DNE (recommend 1073 Mod R) -->
+
* [[The Inverse of a Linear Transformation]]  
* [[Matrix Products and Inverses|Inverse of a Linear Transformation]] <!-- 2233-2.3 and 2.4 -->
+
* [[Sigma Notation]]
* [[Orthogonal Transformations and Orthogonal Matrices| Transpose of a Matrix]] <!-- 2233-5.3 -->
 
  
 
||
 
||
  
* Properties of Determinants
+
* The determinant of 2 by 2 and 3 by 3 matrices
* Sarrus's Rule
+
* The determinant of a general n by n matrix
* Row operations and determinants
+
* The determinant of a triangular matrix
* Invertibility based on the determinant
+
* Properties of the determinant
 +
* The determinant of the transpose
 +
* Invertibility and the determinant
  
||
 
  
  
 
|-
 
|-
  
|Week&nbsp;12  
+
 
 +
|Week&nbsp;12
  
 
||
 
||
  
<div style="text-align: center;">6.3 </div>
+
<div style="text-align: center;">3.3</div>
 
 
||
 
 
 
[[Cramer's Rule]]
 
  
 
||
 
||
  
* [[Determinants]] <!-- 2233- 5.3 -->  
+
<div style="text-align: center;">6.3</div>
* [[Matrix Products and Inverses| Invertible matrices]] <!-- 2233- 2.3 and 2.4 -->
 
* [[Linear Transformations| Rotations]] <!-- 2233- 2.1 and 2,2 -->  
 
  
 
||
 
||
 
+
       
* Parrallelepipeds in R<big>n</big>
+
[[The Geometric Interpretation of the Determinant]]
* Geometric Interpretation of the Determinant
 
* Cramer's rule
 
  
 
||
 
||
 
+
 
+
* [[Orthonormal Bases and the Gram-Schmidt Process]] 
|-
+
* [[Introduction to Determinants]]
 
+
* [[The Inverse of a Linear Transformation]]
 
 
|Week&nbsp;13
 
  
 
||
 
||
  
<div style="text-align: center;">7.1</div>
 
  
||
+
* Cramer's Rule
 
+
* The adjoint and inverse of a matrix
[[Diagonalization]]
+
* The area of a parallelogram and the volume of a parallelepiped
  
||
 
  
* [[Similar Matrices and Coordinates]] <!-- 2233- 3.4 -->
+
|-
* [[Orthogonal Transformations and Orthogonal Matrices]] <!-- 2233- 5.3 -->
 
  
||
 
  
* Diagonalizable matrices
+
|Week&nbsp;13
* Eigenvalues and eigenvectors
 
* Real eigenvalues of orthogonal matrices
 
  
 
||
 
||
  
 
+
<div style="text-align: center;">The beginning of 5.3 as well as the sections 5.1 and 5.2</div>
|-
 
 
 
|Week&nbsp;14
 
  
 
||
 
||
  
<div style="text-align: center;">7.2 and 7.3</div>
+
<div style="text-align: center;">7.1, 7.2 and the beginning of 7.3</div>
  
 
||
 
||
 
+
       
[[Finding Eigenvalues and Eigenvectors]]  
+
[[Eigenvalues and Eigenvectors]]  
  
 
||
 
||
  
* [[Determinants]] <!-- 2233- 5.3 -->
+
* [[Introduction to Determinants]]  
* [[Matrix Products and Inverses| Invertible matrices]] <!-- 2233- 2.3 and 2.4 -->
+
* [[The Column Space and Nullspace of a Linear Transformation]]
* [[Diagonalization]] <!-- 2233- 7.1 -->
+
* [[The Inverse of a Linear Transformation]]  
* [[Image and Kernel of a Linear Transform]] <!-- 2233- 3.1 -->
 
  
 
||
 
||
  
* Eigenvalues from the characteristic equation
+
* The requirement for a matrix to be diagonalizable
* Eigenvalues of Triangular matrices
+
* Definition of an eigenvector
* Characteristic Polynomial
+
* The characteristic equation used to find eigenvalues
* Eigenspaces and eigenvectors
+
* Eigenvalues of a triangular matrix
* Geometric and algebraic multiplicity
+
* Eigenspaces for specific eigenvalues
* Eigenvalues of similar matrices
 
  
  
 
|-
 
|-
  
|Week&nbsp;14  
+
 
 +
|Week&nbsp;14
  
 
||
 
||
  
<div style="text-align: center;">8.1</div>
+
<div style="text-align: center;">5.3 and 5.4</div>
  
 
||
 
||
 
 
[[Symmetric Matrices]]
 
  
||
+
<div style="text-align: center;">3.4 and 7.3</div>
 
 
* [[Similar Matrices and Coordinates]] <!-- 2233- 8.1 -->  
 
* [[Orthogonal Transformations and Orthogonal Matrices| Transpose of a Matrix]] <!-- 2233- 5.3 -->
 
* [[Diagonalization|Eigenvalues and Eigenvectors]] <!-- 2233- 7.1 -->
 
* [[Finding Eigenvalues and Eigenvectors|Algebraic and Geometric Multiplicities]] <!-- 2233- 7.2 and 7.3 -->  
 
  
 
||
 
||
 
+
       
* Orthogonally Diagonalizable Matrices
+
[[Diagonalization of Matrices]]
* Spectral Theorem
 
* The real eigenvalues of a symmetric matrix
 
 
 
|-
 
 
 
|Week&nbsp;14
 
  
 
||
 
||
  
<div style="text-align: center;">8.2</div>
+
* [[Eigenvalues and Eigenvectors]]    
 
+
* [[The Column Space and Nullspace of a Linear Transformation]]
||
 
    
 
[[Quadratic Forms]]  
 
  
 
||
 
||
  
* [[Symmetric Matrices]] <!-- 2233- 8.1 -->
+
* Similar matrices
* [[Finding Eigenvalues and Eigenvectors]] <!-- 2233- 7.2 and 7.3 -->
+
* Diagonalization in terms of linearly independent eigenvectors
* '''[[Conics]]''' <!-- DNE (recommend 1093 or do not include discussion on Principal axes in this topic -->
+
* Algebraic and geometric multiplicity for a specific eigenvalue
 +
* The strategy for diagonalization
  
||
 
  
* Quadratic Forms
 
* Diagonalizing a Quadratic Form
 
* Definiteness of a Quadratic Form
 
* '''Principal Axes''' <!-- May not include if conics are not discussed prior  -->
 
* '''Ellipses and Hyperbolas from Quadratic Forms'''  <!-- May not include if conics are not discussed prior  -->
 
  
||
+
|-

Latest revision as of 12:58, 29 January 2022

A comprehensive list of all undergraduate math courses at UTSA can be found here.

The Wikipedia summary of Linear Algebra and its history.

Topics List

Date Sections from Lay Sections from Bretscher Topics Prerequisite Skills Student Learning Outcomes
Week 1
1.1 and 1.2
1.1

Introduction to Linear Systems of Equations

  • Using elimination to find solutions of linear systems
  • The Geometrical interpretation of solutions to linear systems
Week 2
1.3, 1.4, and 1.5
1.2 and 1.3

Vectors and Matrices

Gauss-Jordan Elimination

  • Vectors and vector addition
  • Matrix notation
  • The Gauss-Jordan method for solving a linear system of equation
  • The rank of a matrix
  • Sums of Matrices
  • The product Ax (where A is a matrix and x is a vector)
  • The Dot product
  • Linear Combinations


Week 3
2.1
2.3

Matrix Algebra and Matrix Multiplication

  • Matrix Operations
  • Matrix products by columns
  • Matrix products using the dot product
Week 3
2.2 and 2.3
2.4

The Inverse of a Linear Transformation

  • The Identity matrix
  • The Inverse of a Matrix
  • Various characterizations for an invertible matrix


Week 4
1.8 and 1.9
2.1

Introduction to Linear Transformations

  • Linear Transformations
  • Requirements for a transformation to be linear
Week 5
1.7, 2.8, and 2.9
3.2

Subspaces of Rⁿ and Linear Independence

  • Definition of a subspace of Rⁿ
  • Defining linear independence for a set of vectors
  • Definition of a basis for a subspace


Week 6
4.1
4.1

Introduction to Vector Spaces

  • Definition of a vector space(or linear space)
  • Subspaces of vector spaces
  • Linear combinations and bases for vector spaces
  • Examples of vector spaces of functions


Week 6
4.2
3.1

The Column Space and Nullspace of a Linear Transformation

  • The image (or column space) of a linear transformation
  • The kernel (or nullspace) of a linear transformation
  • Properties of the kernel


Week 7
4.3 and 4.5
3.3 and 4.1

The Dimension of a Vector Space


  • The number of vectors in a basis of Rn
  • Dimension of a subspace in Rⁿ
  • The dimension of a vector space
  • The dimension of the nullspace (or kernel) and the column space (or image)
  • The Rank-nullity Theorem


Week 8
6.1 and 6.2
Appendix A and 5.1

Dot Products and Orthogonality

  • Orthogonal vectors
  • Length (or magnitude or norm) of a vector
  • Unit vectors
  • Orthonormal vectors
  • Orthogonal projections
  • Orthogonal complements
  • Cauchy-Schwarz inequality
  • The angle between vectors
Week 9
6.3 and 6.4
5.2 and 5.3

Orthonormal Bases and the Gram-Schmidt Process

Orthogonal Transformations and Orthogonal Matrices

  • Orthogonal transformations
  • Orthonormal Bases
  • Orthogonal matrices
  • The transpose of a matrix
  • The Gram-Schmidt Process
  • QR factorization
Week 10
6.5 and 6.6
5.4

The Least-squares Solution

  • The orthogonal complement of the image is equal to the left nullspace (or kernel of the transpose) for all matrices
  • The least-squares solution for a linear system
  • Data fitting using the least-squares solution


Week 11
3.1 and 3.2
6.1 and 6.2

Introduction to Determinants

Cramer's Rule

  • The determinant of 2 by 2 and 3 by 3 matrices
  • The determinant of a general n by n matrix
  • The determinant of a triangular matrix
  • Properties of the determinant
  • The determinant of the transpose
  • Invertibility and the determinant


Week 12
3.3
6.3

The Geometric Interpretation of the Determinant


  • Cramer's Rule
  • The adjoint and inverse of a matrix
  • The area of a parallelogram and the volume of a parallelepiped


Week 13
The beginning of 5.3 as well as the sections 5.1 and 5.2
7.1, 7.2 and the beginning of 7.3

Eigenvalues and Eigenvectors

  • The requirement for a matrix to be diagonalizable
  • Definition of an eigenvector
  • The characteristic equation used to find eigenvalues
  • Eigenvalues of a triangular matrix
  • Eigenspaces for specific eigenvalues


Week 14
5.3 and 5.4
3.4 and 7.3

Diagonalization of Matrices

  • Similar matrices
  • Diagonalization in terms of linearly independent eigenvectors
  • Algebraic and geometric multiplicity for a specific eigenvalue
  • The strategy for diagonalization