Difference between revisions of "Double-angle formulas"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
(fixing link to go straight to pdf)
Line 1: Line 1:
 +
Double angle formulas:
 +
* <math> \sin{(2x)} = 2\sin{x}\cos{x} </math>
 +
 +
 +
* <math> \cos{(2x)} = \cos^2{x} - \sin^2{x} </math>
 +
* <math> \;\;\;\;\;\;\;\;\;\;\;\;\; = 2\cos^2{x} - 1 </math>
 +
* <math> \;\;\;\;\;\;\;\;\;\;\;\;\; = 1 - 2\sin^2{x} </math>
 +
 +
 +
* <math> \tan{(2x)} = \frac{2\tan{x}}{1 - \tan^2{x}} </math>
 +
 +
==Resources==
 
* [https://mathresearch.utsa.edu/wikiFiles/MAT1093/Double-angle%20formulas/Esparza%201093%20Notes%203.6A.pdf Double-angle formulas]. Written notes created by Professor Esparza, UTSA.
 
* [https://mathresearch.utsa.edu/wikiFiles/MAT1093/Double-angle%20formulas/Esparza%201093%20Notes%203.6A.pdf Double-angle formulas]. Written notes created by Professor Esparza, UTSA.

Revision as of 14:42, 23 September 2021

Double angle formulas:

  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin{(2x)} = 2\sin{x}\cos{x} }


  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos{(2x)} = \cos^2{x} - \sin^2{x} }
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \;\;\;\;\;\;\;\;\;\;\;\;\; = 2\cos^2{x} - 1 }
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \;\;\;\;\;\;\;\;\;\;\;\;\; = 1 - 2\sin^2{x} }


  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tan{(2x)} = \frac{2\tan{x}}{1 - \tan^2{x}} }

Resources