Difference between revisions of "MAT1224"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
(Added content to the table)
(Completed first version of the table)
Line 334: Line 334:
 
<div style="text-align: center;">3.7</div>
 
<div style="text-align: center;">3.7</div>
  
||
+
||
 
 
  
 
[[Improper Integrals]]
 
[[Improper Integrals]]
Line 361: Line 360:
 
<div style="text-align: center;">4.1</div>
 
<div style="text-align: center;">4.1</div>
  
||
+
||
 
 
  
 
[[Basics of Differential Equations]]
 
[[Basics of Differential Equations]]
Line 388: Line 386:
 
<div style="text-align: center;">4.2</div>
 
<div style="text-align: center;">4.2</div>
  
||
+
||
 
 
  
 
[[Direction Fields and Numerical Methods]]
 
[[Direction Fields and Numerical Methods]]
Line 416: Line 413:
 
<div style="text-align: center;">4.3</div>
 
<div style="text-align: center;">4.3</div>
  
||
+
||
 
 
  
 
[[Separable Equations]]
 
[[Separable Equations]]
Line 444: Line 440:
 
<div style="text-align: center;">4.4</div>
 
<div style="text-align: center;">4.4</div>
  
||
+
||
 
 
  
 
[[Exponential Growth and Decay, The Logistic Equation]]
 
[[Exponential Growth and Decay, The Logistic Equation]]
Line 455: Line 450:
 
* [[Defining the Derivative|Slope of a Line]] <!-- 1214-3.1 -->
 
* [[Defining the Derivative|Slope of a Line]] <!-- 1214-3.1 -->
 
* [[Direction Fields and Numerical Methods| Find Equalibria and determine their Stability]] <!-- 1224-3.2 -->
 
* [[Direction Fields and Numerical Methods| Find Equalibria and determine their Stability]] <!-- 1224-3.2 -->
 
  
 
||
 
||
Line 473: Line 467:
 
<div style="text-align: center;">5.1</div>
 
<div style="text-align: center;">5.1</div>
  
||
+
||
 
 
  
 
[[Sequences]]
 
[[Sequences]]
Line 500: Line 493:
 
<div style="text-align: center;">5.2</div>
 
<div style="text-align: center;">5.2</div>
  
||
+
||
 
 
  
 
[[Series]]
 
[[Series]]
Line 511: Line 503:
  
 
||
 
||
 
  
 
* Define the convergence or divergence of an infinite series.
 
* Define the convergence or divergence of an infinite series.
Line 525: Line 516:
 
<div style="text-align: center;">5.3</div>
 
<div style="text-align: center;">5.3</div>
  
||
+
||
 
 
  
 
[[The Divergence and Integral Tests]]
 
[[The Divergence and Integral Tests]]
Line 553: Line 543:
 
<div style="text-align: center;">5.4</div>
 
<div style="text-align: center;">5.4</div>
  
||
+
||  
 
 
  
 
[[Comparison Tests]]
 
[[Comparison Tests]]
Line 578: Line 567:
 
<div style="text-align: center;">5.5</div>
 
<div style="text-align: center;">5.5</div>
  
||
+
||
 
 
  
 
[[Alternating Series]]
 
[[Alternating Series]]
Line 603: Line 591:
 
||
 
||
  
<div style="text-align: center;">5.2</div>
+
<div style="text-align: center;">5.6</div>
  
||
+
||  
 
 
  
 
[[Ratio and Root Tests]]
 
[[Ratio and Root Tests]]
Line 624: Line 611:
 
|-
 
|-
  
|Week&nbsp;12/13    
+
|Week&nbsp;15/16    
  
 
||
 
||
  
<div style="text-align: center;">5.3</div>
+
<div style="text-align: center;">6.1</div>
  
 
||
 
||
 
    
 
    
[[The Fundamental Theorem of Calculus]]
+
[[Power Series and Functions]]
  
 
||
 
||
  
* [[The Derivative of a Function]] <!-- 1214-2.1 -->
+
* [[Intro to Polynomial Functions| Polynomials]] <!-- 1073-Mod 2.1 -->
* [[Antiderivatives]] <!-- 1214-4.10 -->
+
* [[Continuity]] <!-- 1214-3.5 -->
* [[Mean Value Theorem]] <!-- 1214-4.4 -->
+
* [[Series]] <!-- 1224-5.2 -->
* [[Inverse Functions]] <!-- 1073-7 -->
+
* [[Ratio and Root Tests]] <!-- 1224-5.6 -->
  
 
||
 
||
  
* Describe the meaning of the Mean Value Theorem for Integrals.
+
* Recognize a power series.
* State the meaning of the Fundamental Theorem of Calculus, Part 1.
+
* Find its interval and radius of convergence.
* Use the Fundamental Theorem of Calculus, Part 1, to evaluate derivatives of integrals.
+
* Represent certain functions as power series.
* State the meaning of the Fundamental Theorem of Calculus, Part 2.
 
* Use the Fundamental Theorem of Calculus, Part 2, to evaluate definite integrals.
 
* Explain the relationship between differentiation and integration.
 
  
  
Line 655: Line 639:
  
  
|Week&nbsp;13
+
|Week&nbsp;16
  
 
||
 
||
  
<div style="text-align: center;">5.4</div>
+
<div style="text-align: center;">6.2</div>
  
||
+
||  
 
 
  
[[Integration Formulas and the Net Change Theorem]]
+
[[Properties of Power Series]]
  
 
||
 
||
  
 
* [[Antiderivatives|Indefinite integrals]]  <!-- 1214-4.10 -->
 
* [[Antiderivatives|Indefinite integrals]]  <!-- 1214-4.10 -->
* [[The Fundamental Theorem of Calculus|The Fundamental Theorem (part 2)]] <!-- 1214-5.3 -->
+
* [[The Limit Laws]] <!-- 1214-2.3 -->
* [[Toolkit Functions|Displacment vs. distance traveled]] <!-- DNE (recommend 1073-1) -->
+
* [[Power Series and Functions]] <!-- 1224-6.1 -->
  
 
||
 
||
  
* Apply the basic integration formulas.
+
* Differentiate and integrate power series term-by-term.
* Explain the significance of the net change theorem.
+
* Recognize certain continuous functions as power series on their radius of convergence.
* Use the net change theorem to solve applied problems.
 
* Apply the integrals of odd and even functions.
 
  
  
Line 685: Line 666:
  
  
|Week&nbsp;14  
+
|Week&nbsp;17  
  
 
||
 
||
  
<div style="text-align: center;">5.5</div>
+
<div style="text-align: center;">6.3</div>
  
||
+
||
 
 
  
[[Substitution Method for Integrals]]
+
[[Taylor and Maclaurin Series]]
  
 
||
 
||
  
* [[The Definite Integral|Solving Basic Integrals]] <!-- 1214-5.2 -->
 
 
* [[The Derivative of a Function]] <!-- 1214-2.1 -->
 
* [[The Derivative of a Function]] <!-- 1214-2.1 -->
* '''[[Change of Variables]]''' <!-- DNE (recommend 1073-R) -->
+
* [[Power Series and Functions]] <!-- 1224-6.1 -->
 +
* [[Properties of Power Series]] <!-- 1224-6.2 -->
  
 
||
 
||
  
* Use substitution to evaluate indefinite integrals.
+
* Find the Taylor or Maclaurin series representation of a function.
* Use substitution to evaluate definite integrals.
+
* Find the radius of convergence of a Taylor Series.
 +
* Estimate the remainder in a Taylor polynomial approximation.
  
  
Line 713: Line 694:
  
  
|Week&nbsp;14/15    
+
|Week&nbsp;17/18    
  
 
||
 
||
  
<div style="text-align: center;">5.6</div>
+
<div style="text-align: center;">7.1</div>
  
 
||
 
||
 
 
  
 
+
[[Parametric Equations]]
[[Integrals Involving Exponential and Logarithmic Functions]]
 
  
 
||
 
||
  
 +
* [[Trigonometric Function]] <!-- 1093-2.2 -->
 
* [[Exponential Functions]] <!-- 1073-8 -->
 
* [[Exponential Functions]] <!-- 1073-8 -->
* [[Logarithmic Functions]] <!-- 1073-8 -->
+
* [[Toolkit Functions|Sketching Common Functions]] <!-- 1073-Mod 1.2 -->
* [[Differentiation Rules]] <!-- 1214-5.2 -->
 
* [[Antiderivatives]] <!-- 1214-4.10 -->
 
 
 
||
 
 
 
* Integrate functions involving exponential functions.
 
* Integrate functions involving logarithmic functions.
 
 
 
 
 
 
 
|-
 
 
 
 
 
|Week&nbsp;15 
 
 
 
||
 
 
 
<div style="text-align: center;">5.7</div>
 
 
 
||
 
 
 
 
 
[[Integrals Resulting in Inverse Trigonometric Functions]]
 
 
 
||
 
 
 
* [[The inverse sine, cosine and tangent functions|Trigonometric functions and their inverses]] <!-- 1093-3.1 and 3.2 -->
 
* [[Inverse Functions|Injective Functions]] <!-- 1073-7 and 1093-1.7-->
 
* [[The Definite Integral|Rules for Integration]] <!-- 1214-5.2 -->
 
  
 
||
 
||
  
* Integrate functions resulting in inverse trigonometric functions.
+
* Sketch the graph of a parametric curve
 
  
 
||
 
||

Revision as of 07:12, 24 June 2020

The textbook for this course is Calculus (Volume 2) by Gilbert Strang, Edwin Herman, et al.

A comprehensive list of all undergraduate math courses at UTSA can be found here.

The Wikipedia summary of calculus and its history.

Topics List

Date Sections Topics Prerequisite Skills Student Learning Outcomes
Week 1
1.3

The Fundamental Theorem of Calculus

  • Evaluate definite integrals using the Fundamental Theorem of Calculus
  • Interpret the definite integral as the signed area under the graph of a function.
Week 1/2
1.5


Integration by Substitution



  • Use substitution to evaluate indefinite integrals.
  • Use substitution to evaluate definite integrals.
Week 3
1.2

Area between Curves


  • Find the area of plane regions bounded by the graphs of functions.
Week 3/4
2.2

Determining Volumes by Slicing

  • Find the volume of solid regions with known cross-sectional area.


Week 4
2.3


The Shell Method

  • Find the volume of solid regions obtained by revolving a plane region about a line.


Week 4/5
2.4


Arc Length and Surface Area

  • Find the arc length of a plane curve
  • The area of the surface obtained by revolving a curve about one of the coordinate axes.


Week 5/6
2.5


Physical Applications

  • Find the mass of an object with given density function.
  • Find the work done by a variable force
  • Find the work done in pumping fluid from a tank
  • Find the hydrostatic force on a vertical plate.


Week 6/7
2.6


Moments and Center of Mass

  • Find the moments and center of mass of a thin plate of uniform density.


Week 6
3.1


Integration by Parts

  • Integrate products of certain functions.
  • Integrate logarithmic and inverse trigonometric functions.


Week 7
3.2


Trigonometric Integrals

  • Integrate products of powers of sin(x) and cos(x) as well as sec(x) and tan(x).


Week 7/8
3.3


Trigonometric Substitution


  • Integrate the square root of a sum or difference of squares.


Week 6/7
3.8


Partial Fractions

  • Integrate rational functions whose denominator is a product of linear and quadratic polynomials.


Week 7
3.7

Improper Integrals

  • Recognize improper integrals and determine their convergence or divergence.


Week 8
4.1

Basics of Differential Equations

  • Classify an Ordinary Differential Equation according to order and linearity.
  • Verify that a function is a solution of an Ordinary Differential Equation or an initial value problem.


Week 8/9
4.2

Direction Fields and Numerical Methods

  • Sketch the direction field of a first-order ODE(Ordinary Differential Equation) by hand
  • Using direction field, find equilibria of an autonomous ODE.
  • Determine the stability of equilibria using a phase line diagram.


Week 9
4.3

Separable Equations

  • Recognize and solve separable differential equations
  • Develop and analyze elementary mathematical models.


Week 10/11
4.4

Exponential Growth and Decay, The Logistic Equation

  • Solve the exponential growth/decay equations and the logistic equation.
  • Describe the differences between these two models for population growth.


Week 11
5.1

Sequences

  • Find the formula for the general term of a sequence.
  • Discuss the convergence or divergence of a sequence.
  • Find the limit of a convergent sequence.
  • Determine whether a sequence is monotone.


Week 11/12
5.2

Series

  • Define the convergence or divergence of an infinite series.
  • Find the sum of a geometric or telescoping series.
Week 12
5.3

The Divergence and Integral Tests

  • Determine the convergence or divergence of a series using the Divergence or Integral Tests.
  • Estimate the sum of a series using the Remainder Estimate Theorem.


Week 13/14
5.4

Comparison Tests

  • Determine the convergence or divergence of a series using the Direct or Limit Comparison Tests.


Week 14
5.5

Alternating Series

  • Determine the convergence or divergence of alternating series.
  • Estimate the sum of an alternating series.
  • Describe the difference between conditional and absolute convergence.


Week 15
5.6

Ratio and Root Tests


  • Determine the convergence or divergence of infinite series using the ratio and root tests..


Week 15/16
6.1

Power Series and Functions

  • Recognize a power series.
  • Find its interval and radius of convergence.
  • Represent certain functions as power series.


Week 16
6.2

Properties of Power Series

  • Differentiate and integrate power series term-by-term.
  • Recognize certain continuous functions as power series on their radius of convergence.



Week 17
6.3

Taylor and Maclaurin Series

  • Find the Taylor or Maclaurin series representation of a function.
  • Find the radius of convergence of a Taylor Series.
  • Estimate the remainder in a Taylor polynomial approximation.



Week 17/18
7.1

Parametric Equations

  • Sketch the graph of a parametric curve