Difference between revisions of "Double-angle formulas"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
 
Line 1: Line 1:
 
Double angle formulas:
 
Double angle formulas:
 
* <math> \sin{(2x)} = 2\sin{x}\cos{x} </math>
 
* <math> \sin{(2x)} = 2\sin{x}\cos{x} </math>
 
  
 
* <math> \cos{(2x)} = \cos^2{x} - \sin^2{x} </math>
 
* <math> \cos{(2x)} = \cos^2{x} - \sin^2{x} </math>
 
: <math> \;\;\;\;\;\;\;\;\;\;\;\;\; = 2\cos^2{x} - 1 </math>
 
: <math> \;\;\;\;\;\;\;\;\;\;\;\;\; = 2\cos^2{x} - 1 </math>
 
: <math> \;\;\;\;\;\;\;\;\;\;\;\;\; = 1 - 2\sin^2{x} </math>
 
: <math> \;\;\;\;\;\;\;\;\;\;\;\;\; = 1 - 2\sin^2{x} </math>
 
  
 
* <math> \tan{(2x)} = \frac{2\tan{x}}{1 - \tan^2{x}} </math>
 
* <math> \tan{(2x)} = \frac{2\tan{x}}{1 - \tan^2{x}} </math>

Latest revision as of 14:44, 23 September 2021

Double angle formulas:

Resources