Difference between revisions of "Double-angle formulas"
Jump to navigation
Jump to search
Line 1: | Line 1: | ||
Double angle formulas: | Double angle formulas: | ||
* <math> \sin{(2x)} = 2\sin{x}\cos{x} </math> | * <math> \sin{(2x)} = 2\sin{x}\cos{x} </math> | ||
− | |||
* <math> \cos{(2x)} = \cos^2{x} - \sin^2{x} </math> | * <math> \cos{(2x)} = \cos^2{x} - \sin^2{x} </math> | ||
: <math> \;\;\;\;\;\;\;\;\;\;\;\;\; = 2\cos^2{x} - 1 </math> | : <math> \;\;\;\;\;\;\;\;\;\;\;\;\; = 2\cos^2{x} - 1 </math> | ||
: <math> \;\;\;\;\;\;\;\;\;\;\;\;\; = 1 - 2\sin^2{x} </math> | : <math> \;\;\;\;\;\;\;\;\;\;\;\;\; = 1 - 2\sin^2{x} </math> | ||
− | |||
* <math> \tan{(2x)} = \frac{2\tan{x}}{1 - \tan^2{x}} </math> | * <math> \tan{(2x)} = \frac{2\tan{x}}{1 - \tan^2{x}} </math> |
Latest revision as of 14:44, 23 September 2021
Double angle formulas:
Resources
- Double-angle formulas. Written notes created by Professor Esparza, UTSA.