Difference between revisions of "MAT1223"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
(Undo revision 5172 by Juan.gutierrez3 (talk))
Tag: Undo
(→‎Topics List: Changed content with instructors' input)
Line 6: Line 6:
 
The Wikipedia summary of [https://en.wikipedia.org/wiki/Calculus  calculus and its history].
 
The Wikipedia summary of [https://en.wikipedia.org/wiki/Calculus  calculus and its history].
  
==Topics List==
+
{| class="wikitable"
{| class="wikitable sortable"
 
 
! Date !! Sections !! Topics !! Prerequisite Skills !! Student Learning Outcomes
 
! Date !! Sections !! Topics !! Prerequisite Skills !! Student Learning Outcomes
 
 
|-
 
|-
 
+
| Week 1 || 1.5 || [[Integration by Substitution]] || * [[Differentiation Rules]] ||
 
+
* [[Linear Approximations and Differentials]]
|Week 1  
 
 
 
||
 
 
 
<div style="text-align: center;">1.5</div>
 
 
 
||
 
 
 
[[Integration by Substitution]]  
 
 
 
||
 
 
 
* [[Differentiation Rules]] <!-- 1214-3.3 -->
 
* [[Linear Approximations and Differentials|Differentials]] <!-- 1214-4.2 -->
 
* [[Antiderivatives]] <!-- 1214-4.10 -->
 
* [[The Definite Integral]] <!-- 1214-5.2 -->
 
* [[The Fundamental Theorem of Calculus]] <!-- 1214-5.3 -->
 
 
 
||
 
 
 
* Recognize when to use integration by substitution.
 
* Use substitution to evaluate indefinite integrals.
 
* Use substitution to evaluate definite integrals.
 
 
 
 
|-
 
|-
 
+
| Week 1 & 2 || 2.1 || [[Area between Curves]] || * [[Toolkit Functions]] || [[Graphing Elementary Functions]]  
 
 
|Week&nbsp;2
 
 
 
||
 
 
 
<div style="text-align: center;">2.1</div>
 
 
 
||
 
 
 
[[Area between Curves]]  
 
 
 
||
 
 
 
* [[Toolkit Functions|Graphing Elementary Functions]] <!-- 1073-Mod 1.2 -->
 
* [[The Definite Integral]] <!-- 1214-5.2 -->
 
* [[The Fundamental Theorem of Calculus]] <!-- 1214-5.3 -->
 
* [[Integration by Substitution]] <!-- 1224-1.5 -->
 
 
 
||
 
 
 
* Determine the area of a region between two curves by integrating with respect to the independent variable.
 
* Find the area of a compound region.
 
* Determine the area of a region between two curves by integrating with respect to the dependent variable.
 
 
 
 
|-
 
|-
 
+
| Week 2 || 2.2 || [[Determining Volumes by Slicing]] || * '''[[Areas of basic shapes]]''' ||
 
+
* '''[[Volume of a cylinder]]'''  
|Week&nbsp;2  
 
 
 
||
 
 
 
<div style="text-align: center;">2.2</div>
 
 
 
||
 
 
 
[[Determining Volumes by Slicing]]  
 
 
 
||
 
 
 
* '''[[Areas of basic shapes]]''' <!-- Grades 6-12 -->
 
* '''[[Volume of a cylinder]]''' <!-- Grades 6-12 -->
 
* [[Toolkit Functions|Graphing elementary functions]] <!-- 1073-Mod 1.2 -->
 
* [[The Fundamental Theorem of Calculus]] <!-- 1214-5.3 -->
 
* [[Integration by Substitution]] <!-- 1224-1.5 -->
 
 
 
||
 
 
 
* Determine the volume of a solid by integrating a cross-section (the slicing method).
 
* Find the volume of a solid of revolution using the disk method.
 
* Find the volume of a solid of revolution with a cavity using the washer method
 
 
 
 
 
 
|-
 
|-
 
+
| Week 3 || 2.3 || [[Volumes of Revolution, Cylindrical Shells]] || * [[Toolkit Functions]] || [[Graphing elementary functions]]  
 
 
|Week&nbsp;3  
 
 
 
||
 
 
 
<div style="text-align: center;">2.3</div>
 
 
 
||
 
 
 
[[Volumes of Revolution, Cylindrical Shells]]  
 
 
 
||
 
 
 
* [[Toolkit Functions|Graphing elementary functions]] <!-- 1073-Mod 1.2 -->
 
* [[Determining Volumes by Slicing]] <!-- 1224-2.2 -->
 
* [[The Fundamental Theorem of Calculus]] <!-- 1214-5.3 -->
 
* [[Integration by Substitution]] <!-- 1224-1.5 -->
 
 
 
||
 
 
 
* Calculate the volume of a solid of revolution by using the method of cylindrical shells.
 
* Compare the different methods for calculating a volume of revolution.
 
 
 
 
 
 
|-
 
|-
 
+
| Week 3 || 2.4 || [[Arc Length and Surface Area]] || * [[Differentiation Rules]] ||
 
+
* [[The Fundamental Theorem of Calculus]]  
|Week&nbsp;3
 
||
 
 
 
<div style="text-align: center;">2.4</div>
 
 
 
||
 
 
 
[[Arc Length and Surface Area]]  
 
 
 
||
 
 
 
* [[Differentiation Rules]] <!-- 1214-3.3 -->
 
* [[The Fundamental Theorem of Calculus]] <!-- 1214-5.3 -->
 
* [[Integration by Substitution]] <!-- 1224-1.5 -->
 
 
 
||
 
 
 
* Determine the length of a plane curve between two points.
 
* Find the surface area of a solid of revolution.
 
 
 
 
 
 
|-
 
|-
 
+
| Week 4 || 2.5 || [[Physical Applications]] || * '''[[Areas of basic shapes]]''' ||
 
+
* '''[[Volume of a cylinder]]'''  
|Week&nbsp;4
 
 
 
||
 
 
 
<div style="text-align: center;">2.5</div>
 
 
 
||
 
 
 
[[Physical Applications]]
 
 
 
||
 
 
 
* '''[[Areas of basic shapes]]''' <!-- Grades 6-12 -->
 
* '''[[Volume of a cylinder]]''' <!-- Grades 6-12 -->
 
* '''[[Basic Physics (Mass, Force, Work, Newton's Second Law, Hooke's Law)]]''' <!-- Grades 6-12 -->
 
* [[The Fundamental Theorem of Calculus]] <!-- 1214-5.3 -->
 
* [[Integration by Substitution]] <!-- 1224-1.5 -->
 
 
 
||
 
 
 
* Determine the mass of a one-dimensional object from its linear density function.
 
* Determine the mass of a two-dimensional circular object from its radial density function.
 
* Calculate the work done by a variable force acting along a line.
 
* Calculate the work done in stretching/compressing a spring.
 
* Calculate the work done in lifting a rope/cable.
 
* Calculate the work done in pumping a liquid from one height to another.
 
* Find the hydrostatic force against a submerged vertical plate.
 
 
 
 
 
 
|-
 
|-
 
+
| Week 4 & 5 || 2.6 || [[Moments and Center of Mass]] || * [[Toolkit Functions]] || [[Graphing elementary functions]]  
 
 
|Week&nbsp;4
 
 
 
||
 
 
 
<div style="text-align: center;">2.6</div>
 
 
 
||  
 
 
 
[[Moments and Center of Mass]]
 
 
 
||
 
 
 
* [[Toolkit Functions|Graphing elementary functions]] <!-- 1073-Mod 1.2 -->
 
* [[The Fundamental Theorem of Calculus]] <!-- 1214-5.3 -->
 
* [[Integration by Substitution]] <!-- 1224-1.5 -->
 
 
 
||
 
 
 
* Find the center of mass of objects distributed along a line.
 
* Find the center of mass of objects distributed in a plane.
 
* Locate the center of mass of a thin plate.
 
* Use symmetry to help locate the centroid of a thin plate.
 
 
 
 
|-
 
|-
 
+
| Week 5 || 3.1 || [[Integration by Parts]] || * [[Differentiation Rules]] ||
 
+
* [[Linear Approximations and Differentials]]
|Week&nbsp;5
 
 
 
||
 
 
 
<div style="text-align: center;">3.1</div>
 
 
 
||
 
 
 
[[Integration by Parts]]
 
 
 
||
 
 
 
* [[Differentiation Rules]] <!-- 1214-3.3 -->
 
* [[Linear Approximations and Differentials|Differentials]] <!-- 1214-4.2 -->
 
* [[The Fundamental Theorem of Calculus]] <!-- 1214-5.3 -->
 
* [[Integration by Substitution]] <!-- 1224-1.5 -->
 
 
 
||
 
 
 
* Recognize when to use integration by parts.
 
* Use the integration-by-parts formula to evaluate indefinite integrals.
 
* Use the integration-by-parts formula to evaluate definite integrals.
 
* Use the tabular method to perform integration by parts.
 
* Solve problems involving applications of integration using integration by parts.
 
 
 
 
|-
 
|-
 
+
| Week 6 || 3.2 || [[Trigonometric Integrals]] || * [[Trigonometric Functions]] ||
 
+
* [[Properties of the Trigonometric Functions]]
|Week&nbsp;5
 
 
 
||
 
 
 
<div style="text-align: center;">3.2</div>
 
 
 
||  
 
 
 
[[Trigonometric Integrals]]
 
 
 
||
 
 
 
* [[Trigonometric Functions]] <!-- 1093-2.2 -->
 
* [[Properties of the Trigonometric Functions|Trigonometric Identities]] <!-- 1093-3.4 -->
 
* [[The Fundamental Theorem of Calculus]] <!-- 1214-5.3 -->
 
* [[Integration by Substitution]] <!-- 1224-1.5 -->
 
* [[Integration by Parts]] <!-- 1224-3.1 -->
 
 
 
||
 
 
 
* Evaluate integrals involving products and powers of sin(x) and cos(x).
 
* Evaluate integrals involving products and powers of sec(x) and tan(x).
 
* Evaluate integrals involving products of sin(ax), sin(bx), cos(ax), and cos(bx).
 
* Solve problems involving applications of integration using trigonometric integrals.
 
 
 
 
|-
 
|-
 
+
| Week 6 & 7 || 3.3 || [[Trigonometric Substitution]] || * [[Completing the Square]] ||
 
+
* [[Trigonometric Functions]]  
|Week&nbsp;6
 
 
 
||
 
 
 
<div style="text-align: center;">3.3</div>
 
 
 
||
 
 
 
[[Trigonometric Substitution]]
 
 
 
||
 
 
 
* [[Completing the Square]] <!-- 1073-Mod 3.2-->
 
* [[Trigonometric Functions]] <!-- 1093-2.2 -->
 
* [[Properties of the Trigonometric Functions|Trigonometric Identities]] <!-- 1093-3.4 -->
 
* [[Integration by Substitution]] <!-- 1224-1.5 -->
 
* [[Integration by Parts]] <!-- 1224-3.1 -->
 
* [[Trigonometric Integrals]] <!-- 1224-3.2 -->
 
 
 
||
 
 
 
* Evaluate integrals involving the square root of a sum or difference of two squares.
 
* Solve problems involving applications of integration using trigonometric substitution.
 
 
 
 
 
 
|-
 
|-
 
+
| Week 7 || 3.4 || [[Partial Fractions]] || * [[Factoring Polynomials]] ||
 
+
* [[Completing the Square]]  
|Week&nbsp;6
 
 
 
||
 
 
 
<div style="text-align: center;">3.4</div>
 
 
 
||
 
 
 
[[Partial Fractions]]
 
 
 
||
 
 
 
* [[Factoring Polynomials]] <!-- 1073-Mod 0.2 -->
 
* [[Completing the Square]] <!-- 1073-Mod 3.2-->
 
* [[Dividing Polynomials|Long Division of Polynomials]] <!-- 1073-Mod 4.1 -->
 
* [[Systems of Linear Equations]] <!-- 1073-Mod 12.1 and 12.2 -->
 
* [[Antiderivatives]] <!-- 1214-4.10 -->
 
* [[Integration by Substitution]] <!-- 1224-1.5 -->
 
 
 
||
 
 
 
* Integrate a rational function whose denominator is a product of linear and quadratic polynomials.
 
* Recognize distinct linear factors in a rational function.
 
* Recognize repeated linear factors in a rational function.
 
* Recognize distinct irreducible quadratic factors in a rational function.
 
* Recognize repeated irreducible quadratic factors in a rational function.
 
* Solve problems involving applications of integration using partial fractions.
 
 
 
 
|-
 
|-
 
+
| Week || 3.7 || [[Improper Integrals]] || * [[The Fundamental Theorem of Calculus]] ||
 
+
* [[Integration by Substitution]]  
|Week&nbsp;7
 
 
 
||
 
 
 
<div style="text-align: center;">3.7</div>
 
 
 
||
 
 
 
[[Improper Integrals]]
 
 
 
||
 
 
 
* [[The Fundamental Theorem of Calculus]] <!-- 1214-5.3 -->
 
* [[Integration by Substitution]] <!-- 1224-1.5 -->
 
* [[Integration by Parts]] <!-- 1224-3.1 -->
 
* [[Trigonometric Integrals]] <!-- 1224-3.2 -->
 
* [[Trigonometric Substitution]] <!-- 1224-3.3 -->
 
* [[Partial Fractions]] <!-- 1224-3.4 -->
 
* [[The Limit Laws]] <!-- 1214-2.3 -->
 
* [[Limits at Infinity and Asymptotes| Limits at Infinity]] <!-- 1224-4.6 -->
 
* [[L’Hôpital’s Rule]] <!-- 1214-4.8 -->
 
 
 
||
 
 
 
* Recognize improper integrals and determine their convergence or divergence.
 
* Evaluate an integral over an infinite interval.
 
* Evaluate an integral over a closed interval with an infinite discontinuity within the interval.
 
* Use the comparison theorem to determine whether an improper integral is convergent or divergent.
 
 
 
 
|-
 
|-
 
+
| Week 9 || 5.1 || [[Sequences]] || * [[The Limit Laws]] || [[The Limit Laws and Squeeze Theorem]]  
 
 
|Week&nbsp;8
 
 
 
||
 
 
 
<div style="text-align: center;">4.3</div>
 
 
 
||
 
 
 
[[Separation of Variables]]
 
 
 
||
 
 
 
* [[Factoring Polynomials]] <!-- 1073-Mod 0.2 -->
 
* [[Exponential Properties]] <!-- 1073-Mod 9.1 -->
 
* [[Logarithmic Properties]] <!-- 1073-Mod 10.2 -->
 
* [[Linear Approximations and Differentials|Differentials]] <!-- 1214-4.2 -->
 
* [[Initial Value Problem]] <!-- 1214-4.10 -->
 
* [[Integration by Substitution]] <!-- 1224-1.5 -->
 
* [[Integration by Parts]] <!-- 1224-3.1 -->
 
* [[Trigonometric Integrals]] <!-- 1224-3.2 -->
 
* [[Trigonometric Substitution]] <!-- 1224-3.3 -->
 
* [[Partial Fractions]] <!-- 1224-3.4 -->
 
 
 
||
 
 
 
* Recognize separable differential equations.
 
* Use separation of variables to solve a differential equation.
 
* Develop and analyze elementary mathematical models.
 
 
 
 
|-
 
|-
 
+
| Week 10 || 5.2 || [[Infinite Series]] || * '''[[Sigma notation]]'''  ||  
 
+
* [[Sequences]]
|Week&nbsp;8   
 
 
 
||
 
 
 
<div style="text-align: center;">4.5</div>
 
 
 
||
 
 
 
[[First-Order Linear Equations]]
 
 
 
||
 
 
 
* [[Separation of Variables]] <!-- 1224-4.3 -->
 
 
 
||
 
 
 
* Write a first-order linear differential equation in standard form.
 
* Find an integrating factor and use it to solve a first-order linear differential equation.
 
* Solve applied problems involving first-order linear differential equations.
 
 
 
 
|-
 
|-
 
+
| Week 11 || 5.3 || [[The Divergence and Integral Tests]] || * [[The Limit Laws]] ||
 
+
* [[Limits at Infinity and Asymptotes]]
|Week&nbsp;9 
 
 
 
||
 
 
 
<div style="text-align: center;">5.1</div>
 
 
 
||
 
 
 
[[Sequences]]
 
 
 
||
 
 
 
* [[The Limit Laws| The Limit Laws and Squeeze Theorem]] <!-- 1214-2.3 -->
 
* [[Limits at Infinity and Asymptotes| Limits at Infinity]] <!-- 1214-4.6 -->
 
* [[L’Hôpital’s Rule]] <!-- 1214-4.8 -->
 
* [[Derivatives and the Shape of a Graph| Increasing and Decreasing Functions]] <!-- 1214-4.5 -->
 
 
 
||
 
 
 
* Find a formula for the general term of a sequence.
 
* Find a recursive definition of a sequence.
 
* Determine the convergence or divergence of a given sequence.
 
* Find the limit of a convergent sequence.
 
* Determine whether a sequence is bounded and/or monotone.
 
* Apply the Monotone Convergence Theorem.
 
 
 
 
|-
 
|-
 
+
| Week 11 || 5.4 || [[Comparison Tests]] || * [[Limits at Infinity and Asymptotes]] || [[Limits at Infinity]]  
 
 
|Week&nbsp;10
 
 
 
||
 
 
 
<div style="text-align: center;">5.2</div>
 
 
 
||
 
 
 
[[Infinite Series]]
 
 
 
||
 
 
 
* '''[[Sigma notation]]''' <!-- DNE (recommend 1093) -->
 
* [[Sequences]] <!-- 10224-5.1-->
 
* [[Partial Fractions]] <!-- 1224-3.4-->
 
 
 
||
 
 
 
* Write an infinite series using sigma notation.
 
* Find the nth partial sum of an infinite series.
 
* Define the convergence or divergence of an infinite series.
 
* Identify a geometric series.
 
* Apply the Geometric Series Test.
 
* Find the sum of a convergent geometric series.
 
* Identify a telescoping series.
 
* Find the sum of a telescoping series.
 
 
 
 
|-
 
|-
 
+
| Week 12 || 5.5 || [[Alternating Series]] || * [[Limits at Infinity and Asymptotes]] || [[Limits at Infinity]]  
 
 
|Week&nbsp;10
 
 
 
||
 
 
 
<div style="text-align: center;">5.3</div>
 
 
 
||
 
 
 
[[The Divergence and Integral Tests]]
 
 
 
||
 
 
 
* [[The Limit Laws]] <!-- 1214-2.3 -->
 
* [[Limits at Infinity and Asymptotes| Limits at Infinity]] <!-- 1214-4.6 -->
 
* [[Continuity]] <!-- 1214-3.5 -->
 
* [[Derivatives and the Shape of a Graph| Increasing and Decreasing Functions]] <!-- 1214-4.5 -->
 
* [[L’Hôpital’s Rule]] <!-- 1214-4.8 -->
 
* [[Improper Integrals]] <!-- 1224-3.7 -->
 
 
 
||
 
 
 
* Use the Divergence Test to determine whether a series diverges.
 
* Use the Integral Test to determine whether a series converges or diverges.
 
* Use the p-Series Test to determine whether a series converges or diverges.
 
* Estimate the sum of a series by finding bounds on its remainder term.
 
 
 
 
|-
 
|-
 
+
| Week 12 || 5.6 || [[Ratio and Root Tests]] || * '''[[Factorials]]'''  ||  
 
+
* [[Limits at Infinity and Asymptotes]]
|Week&nbsp;11 
 
 
 
||
 
 
 
<div style="text-align: center;">5.4</div>
 
 
 
||  
 
 
 
[[Comparison Tests]]
 
 
 
||
 
 
 
* [[Limits at Infinity and Asymptotes|Limits at Infinity]] <!-- 1214-4.6-->
 
* [[Derivatives and the Shape of a Graph|Increasing and Decreasing Functions]] <!-- 1214-4.5 -->
 
* [[L’Hôpital’s Rule]] <!-- 1214-4.8 -->
 
* [[Infinite Series|The Geometric Series Test]] <!-- 1224-5.2 -->
 
* [[The Divergence and Integral Tests|The p-Series Test]] <!-- 1224-5.3 -->
 
 
 
||
 
 
 
* Use the Direct Comparison Test to determine whether a series converges or diverges.
 
* Use the Limit Comparison Test to determine whether a series converges or diverges.
 
 
 
 
|-
 
|-
 
+
| Week 13 || 6.1 || [[Power Series and Functions]] || * [[Infinite Series]] || [[The Geometric Series Test]]  
 
 
|Week&nbsp;11   
 
 
 
||
 
 
 
<div style="text-align: center;">5.5</div>
 
 
 
||
 
 
 
[[Alternating Series]]
 
 
 
||
 
 
 
* [[Limits at Infinity and Asymptotes|Limits at Infinity]] <!-- 1214-4.6-->
 
* [[Derivatives and the Shape of a Graph|Increasing and Decreasing Functions]] <!-- 1214-4.5 -->
 
* [[L’Hôpital’s Rule]] <!-- 1214-4.8 -->
 
* [[Infinite Series|The Geometric Series Test]] <!-- 1224-5.2 -->
 
* [[The Divergence and Integral Tests|The p-Series Test]] <!-- 1224-5.3 -->
 
* [[Comparison Tests]] <!-- 1224-5.4 -->
 
 
 
||
 
 
 
* Use the Alternating Series Test to determine the convergence of an alternating series.
 
* Estimate the sum of an alternating series.
 
* Explain the meaning of absolute convergence and conditional convergence.
 
 
 
 
 
 
|-
 
|-
 
+
| Week 14 || 6.2 || [[Properties of Power Series]] || * [[Differentiation Rules]] ||  
 
+
* [[Antiderivatives]]
|Week&nbsp;12
 
 
 
||
 
 
 
<div style="text-align: center;">5.6</div>
 
 
 
||  
 
 
 
[[Ratio and Root Tests]]
 
 
 
||
 
 
 
* '''[[Factorials]]''' <!-- Grades 6-12 -->
 
* [[Limits at Infinity and Asymptotes|Limits at Infinity]] <!-- 1214-4.6-->
 
* [[L’Hôpital’s Rule]] <!-- 1214-4.8 -->
 
 
 
||
 
 
 
* Use the Ratio Test to determine absolute convergence or divergence of a series.
 
* Use the Root Test to determine absolute convergence or divergence of a series.
 
* Describe a strategy for testing the convergence or divergence of a series.
 
 
 
 
|-
 
|-
 
+
| Week 15 || 6.3 || [[Taylor and Maclaurin Series]] || * [[The Derivative as a Function]] || [[Higher-Order Derivatives]]  
|Week&nbsp;12 
 
 
 
||
 
 
 
<div style="text-align: center;">6.1</div>
 
 
 
||
 
 
 
[[Power Series and Functions]]
 
 
 
||
 
 
 
* [[Infinite Series|The Geometric Series Test]] <!-- 1224-5.2 -->
 
* [[The Divergence and Integral Tests]] <!-- 1224-5.3 -->
 
* [[Comparison Tests]] <!-- 1224-5.4 -->
 
* [[Alternating Series]] <!-- 1224-5.5 -->
 
* [[Ratio and Root Tests]] <!-- 1224-5.6 -->
 
 
 
||
 
 
 
* Identify a power series.
 
* Determine the interval of convergence and radius of convergence of a power series.
 
* Use a power series to represent certain functions.
 
 
 
|-
 
 
 
 
 
|Week&nbsp;13
 
 
 
||
 
 
 
<div style="text-align: center;">6.2</div>
 
 
 
||
 
 
 
[[Properties of Power Series]]
 
 
 
||
 
 
 
* [[Differentiation Rules]] <!-- 1214-3.3 -->
 
* [[Antiderivatives]]  <!-- 1214-4.10 -->
 
* [[The Fundamental Theorem of Calculus]]  <!-- 1214-5.3 -->
 
* [[Power Series and Functions]] <!-- 1224-6.1 -->
 
 
 
||
 
 
 
* Combine power series by addition or subtraction.
 
* Multiply two power series together.
 
* Differentiate and integrate power series term-by-term.
 
* Use differentiation and integration of power series to represent certain functions as power series.
 
 
 
|-
 
 
 
 
 
|Week&nbsp;14 
 
 
 
||
 
 
 
<div style="text-align: center;">6.3</div>
 
 
 
||
 
 
 
[[Taylor and Maclaurin Series]]
 
 
 
||
 
 
 
* [[The Derivative as a Function|Higher-Order Derivatives]] <!-- 1214-3.2 -->
 
* [[Power Series and Functions]] <!-- 1224-6.1 -->
 
* [[Properties of Power Series]] <!-- 1224-6.2 -->
 
 
 
||
 
 
 
* Find a Taylor or Maclaurin series representation of a function.
 
* Find the radius of convergence of a Taylor Series or Maclaurin series.
 
* Finding a Taylor polynomial of a given order for a function.
 
* Use Taylor's Theorem to estimate the remainder for a Taylor series approximation of a given function.
 
 
 
|-
 
 
 
 
 
|Week&nbsp;15 
 
 
 
||
 
 
 
<div style="text-align: center;">7.1</div>
 
 
 
||
 
 
 
[[Parametric Equations]]
 
 
 
||
 
 
 
* [[Toolkit Functions|Sketching Elementary Functions]] <!-- 1073-Mod 1.2 -->
 
* '''[[Equation of a Circle]]''' <!-- Grades 6-12 -->
 
* '''[[Equation of an Ellipse]]''' <!-- Grades 6-12 -->
 
* [[Trigonometric Functions]] <!-- 1093-2.2 -->
 
* [[Properties of the Trigonometric Functions|Trigonometric Identities]] <!-- 1093-3.4 -->
 
 
 
||
 
 
 
* Plot a curve described by parametric equations.
 
* Convert the parametric equations of a curve into the form y=f(x) by eliminating the parameter.
 
* Recognize the parametric equations of basic curves, such as a line and a circle.
 
 
 
|-
 
 
 
 
 
|Week&nbsp;15 
 
 
 
||
 
 
 
<div style="text-align: center;">7.2</div>
 
 
 
||
 
 
 
[[The Calculus of Parametric Equations]]
 
 
 
||
 
 
 
* [[Parametric Equations]] <!-- 1224-7.1 -->
 
* [[Differentiation Rules]] <!-- 1214-3.3 -->
 
* [[The Derivative as a Function|Higher-Order Derivatives]] <!-- 1214-3.2 -->
 
* [[The Fundamental Theorem of Calculus]] <!-- 1214-5.3 -->
 
* [[Integration by Substitution]] <!-- 1224-1.5 -->
 
* [[Integration by Parts]] <!-- 1224-3.1 -->
 
 
 
||
 
 
 
* Find the slope of the tangent line to a parametric curve at a point.
 
* Use the second derivative to determine the concavity of a parametric curve at a point.
 
* Determine the area bounded by a parametric curve.
 
* Determine the arc length of a parametric curve.
 
* Determine the area of a surface obtained by rotating a parametric curve about an axis.
 
 
 
 
|}
 
|}

Revision as of 13:46, 31 March 2023

The textbook for this course is Calculus (Volume 2) by Gilbert Strang, Edwin Herman, et al.

A comprehensive list of all undergraduate math courses at UTSA can be found here.

The Wikipedia summary of calculus and its history.

Date Sections Topics Prerequisite Skills Student Learning Outcomes
Week 1 1.5 Integration by Substitution * Differentiation Rules
Week 1 & 2 2.1 Area between Curves * Toolkit Functions Graphing Elementary Functions
Week 2 2.2 Determining Volumes by Slicing * Areas of basic shapes
Week 3 2.3 Volumes of Revolution, Cylindrical Shells * Toolkit Functions Graphing elementary functions
Week 3 2.4 Arc Length and Surface Area * Differentiation Rules
Week 4 2.5 Physical Applications * Areas of basic shapes
Week 4 & 5 2.6 Moments and Center of Mass * Toolkit Functions Graphing elementary functions
Week 5 3.1 Integration by Parts * Differentiation Rules
Week 6 3.2 Trigonometric Integrals * Trigonometric Functions
Week 6 & 7 3.3 Trigonometric Substitution * Completing the Square
Week 7 3.4 Partial Fractions * Factoring Polynomials
Week 8 3.7 Improper Integrals * The Fundamental Theorem of Calculus
Week 9 5.1 Sequences * The Limit Laws The Limit Laws and Squeeze Theorem
Week 10 5.2 Infinite Series * Sigma notation
Week 11 5.3 The Divergence and Integral Tests * The Limit Laws
Week 11 5.4 Comparison Tests * Limits at Infinity and Asymptotes Limits at Infinity
Week 12 5.5 Alternating Series * Limits at Infinity and Asymptotes Limits at Infinity
Week 12 5.6 Ratio and Root Tests * Factorials
Week 13 6.1 Power Series and Functions * Infinite Series The Geometric Series Test
Week 14 6.2 Properties of Power Series * Differentiation Rules
Week 15 6.3 Taylor and Maclaurin Series * The Derivative as a Function Higher-Order Derivatives