Logarithmic Functions
Contents
Logarithmic Functions
In mathematics you can find the inverse of an exponential function by switching x and y around: becomes . The problem arises on how to find the value of y. The logarithmic function solved this problem. All conversions of logarithmic function into an exponential function follow the same pattern: becomes . If a log is given without a written b then b=10. Also with logarithmic functions, b > 0 and . There are 2 cases where the log is equal to x: and .
Laws of Logarithmic Functions
When X and Y are positive.
Change of Base
When x and b are positive real numbers and are not equal to 1. Then you can write as . This works for the natural log as well. here is an example:
Solving a Logarithmic Equation
A logarithmic equation is an equation wherein one or more of the terms is a logarithm.
e.g. Solve [note 1]
now check
Resources
- Logarithmic Functions, Book Chapter
- Guided Notes
Cite error: <ref>
tags exist for a group named "note", but no corresponding <references group="note"/>
tag was found, or a closing </ref>
is missing