Difference between revisions of "MAT1224"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
(began constructing table)
 
 
(67 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 
The textbook for this course is  
 
The textbook for this course is  
[https://openstax.org/details/calculus-volume-1 Calculus (Volume 1) by Gilbert Strang, Edwin Herman, et al.]
+
[https://openstax.org/details/books/calculus-volume-2 Calculus (Volume 2) by Gilbert Strang, Edwin Herman, et al.]
  
 
A comprehensive list of all undergraduate math courses at UTSA can be found [https://catalog.utsa.edu/undergraduate/coursedescriptions/mat/  here].
 
A comprehensive list of all undergraduate math courses at UTSA can be found [https://catalog.utsa.edu/undergraduate/coursedescriptions/mat/  here].
Line 16: Line 16:
 
||
 
||
  
<div style="text-align: center;">2.2</div>
+
<div style="text-align: center;">1.3</div>
  
 
||
 
||
 
          
 
          
[[Limit_of_a_function|The Limit of a Function]]  
+
[[The Fundamental Theorem of Calculus]]  
  
 
||
 
||
  
* [[Functions|Evaluation of a function]] <!-- 1073-1 --> including the [[Absolute Value Functions| Absolute Value]] <!-- DNE (recommend 1073-1) -->, [[Rational Functions|Rational]] <!-- 1073-4 -->, and [[Piecewise Functions|Piecewise]] functions <!-- 1073-1 -->
+
* [[Differentiation Rules]] <!-- 1214-3.3 -->
* [[Functions|Domain and Range of a Function]] <!-- 1073-1 -->
+
* [[Chain Rule|The Chain Rule]] <!-- 1214-3.6 -->
 +
* [[Antiderivatives]] <!-- 1214-4.10 -->  
 +
* [[The Definite Integral]] <!-- 1214-5.2 -->
  
 
||
 
||
 
+
*  
*Describe the limit of a function using correct notation.
+
* Use the Fundamental Theorem of Calculus, Part 1, to evaluate derivatives of integrals.
*Use a table of values to estimate the limit of a function or to identify when the limit does not exist.
+
* Use the Fundamental Theorem of Calculus, Part 2, to evaluate definite integrals.
*Use a graph to estimate the limit of a function or to identify when the limit does not exist.
+
* Explain the relationship between differentiation and integration.
*Define one-sided limits and provide examples.
 
*Explain the relationship between one-sided and two-sided limits.
 
*Describe an infinite limit using correct notation.
 
*Define a vertical asymptote.
 
 
 
  
 
|-
 
|-
  
  
|Week&nbsp;1/2   
+
|Week&nbsp;1  
  
 
||
 
||
  
<div style="text-align: center;">2.3</div>
+
<div style="text-align: center;">1.5</div>
  
 
||
 
||
 
    
 
    
 
+
[[Integration by Substitution]]  
[[Limit_laws|The Limit Laws]]  
 
  
 
||
 
||
  
 
+
* [[Differentiation Rules]] <!-- 1214-3.3 -->
 
+
* [[Linear Approximations and Differentials|Differentials]] <!-- 1214-4.2 -->
*[[FactoringPolynomials|Factoring Polynomials]] <!-- 1023-P5 -->
+
* [[Antiderivatives]] <!-- 1214-4.10 -->
*[[Radicals|Identifying conjugate radical expressions]] <!-- 1073-R -->
+
* [[The Definite Integral]] <!-- 1214-5.2 -->
*[[RationalFunctions|Simplifying rational expressions]] <!-- 1073-4 -->
+
* [[The Fundamental Theorem of Calculus]] <!-- 1214-5.3 -->
*[[Domain of a Function|Evaluating piecewise functions]] <!-- 1073-1.2 -->
 
*[[Trigonometric Functions|The trigonometric functions]] <!-- 1093-2.2 -->
 
 
 
  
 
||
 
||
  
*Recognize the basic limit laws.
+
* Recognize when to use integration by substitution.
*Use the limit laws to evaluate the limit of a function.
+
* Use substitution to evaluate indefinite integrals.
*Evaluate the limit of a function by factoring.
+
* Use substitution to evaluate definite integrals.
*Use the limit laws to evaluate the limit of a polynomial or rational function.
 
*Evaluate the limit of a function by factoring or by using conjugates.
 
*Evaluate the limit of a function by using the squeeze theorem.
 
*Evaluate left, right, and two sided limits of piecewise defined functions.
 
*Evaluate limits of the form K/0, K≠0.
 
*Establish  and use this to evaluate other limits involving trigonometric functions.
 
  
 
|-
 
|-
  
  
|Week&nbsp;2/3
+
|Week&nbsp;2
  
 
||
 
||
  
<div style="text-align: center;">2.4</div>
+
<div style="text-align: center;">2.1</div>
  
 
||
 
||
 
    
 
    
[[Continuity|Continuity]]  
+
[[Area between Curves]]  
 
 
  
 
||
 
||
  
* [[Functions|Domain and Range of a Function]] <!-- 1073-1 -->
+
* [[Toolkit Functions|Graphing Elementary Functions]] <!-- 1073-Mod 1.2 -->
* [[Inequalities|Interval notation]] <!-- 1023-1.7 -->
+
* [[The Definite Integral]] <!-- 1214-5.2 -->
* [[limits of functions|Evaluate limits]] <!-- 1214-1 -->
+
* [[The Fundamental Theorem of Calculus]] <!-- 1214-5.3 -->
 +
* [[Integration by Substitution]] <!-- 1224-1.5 -->
  
 
||
 
||
  
* Continuity at a point.  
+
* Determine the area of a region between two curves by integrating with respect to the independent variable.
* Describe three kinds of discontinuities.
+
* Find the area of a compound region.
* Define continuity on an interval.
+
* Determine the area of a region between two curves by integrating with respect to the dependent variable.
* State the theorem for limits of composite functions and use the theorem to evaluate limits.
 
* Provide an example of the intermediate value theorem.
 
 
 
  
 
|-
 
|-
  
  
|Week&nbsp;
+
|Week&nbsp;2
  
 
||
 
||
  
<div style="text-align: center;">4.6</div>
+
<div style="text-align: center;">2.2</div>
  
 
||
 
||
 
    
 
    
[[Limits_at_infinity|Limits at infinity and asymptotes]]  
+
[[Determining Volumes by Slicing]]  
  
 
||
 
||
  
* [[Rational Functions|Horizontal asymptote of a function]] <!-- 1073-5 -->
+
* [[Areas of basic shapes]] <!-- Grades 6-12 -->
 +
* [[Volume of a cylinder]] <!-- Grades 6-12 -->
 +
* [[Toolkit Functions|Graphing elementary functions]] <!-- 1073-Mod 1.2 -->
 +
* [[The Fundamental Theorem of Calculus]] <!-- 1214-5.3 -->
 +
* [[Integration by Substitution]] <!-- 1224-1.5 -->
  
 
||
 
||
  
* Calculate the limit of a function that is unbounded.
+
* Determine the volume of a solid by integrating a cross-section (the slicing method).
* Identify a horizontal asymptote for the graph of a function.
+
* Find the volume of a solid of revolution using the disk method.
 
+
* Find the volume of a solid of revolution with a cavity using the washer method.
 
 
||
 
  
  
Line 133: Line 119:
  
  
|Week&nbsp;3/4 
+
|Week&nbsp;3  
  
 
||
 
||
  
<div style="text-align: center;">3.1</div>
+
<div style="text-align: center;">2.3</div>
  
 
||
 
||
 
    
 
    
 
+
[[Volumes of Revolution, Cylindrical Shells]]  
[[Derivative_definition|Defining the Derivative]]
 
 
 
||
 
 
 
* [[Functions|Evaluation of a function at a value]] <!-- 1073-1 -->
 
* [[Linear Functions and Slope|The equation of a line and its slope]] <!-- 1023-2.3 -->
 
* [[Limits of Functions|Evaluating limits]] <!-- 1214-1 -->
 
  
 
||
 
||
  
* Recognize the meaning of the tangent to a curve at a point.
+
* [[Toolkit Functions|Graphing elementary functions]] <!-- 1073-Mod 1.2 -->
* Calculate the slope of a secant line (average rate of change of a function over an interval).
+
* [[Determining Volumes by Slicing]] <!-- 1224-2.2 -->
* Calculate the slope of a tangent line.
+
* [[The Fundamental Theorem of Calculus]] <!-- 1214-5.3 -->
* Find the equation of the line tangent to a curve at a point.
+
* [[Integration by Substitution]] <!-- 1224-1.5 -->
* Identify the derivative as the limit of a difference quotient.
 
* Calculate the derivative of a given function at a point.
 
  
 
||
 
||
  
 
+
* Calculate the volume of a solid of revolution by using the method of cylindrical shells.
 +
* Compare the different methods for calculating a volume of revolution.
  
 
|-
 
|-
  
  
|Week&nbsp;4
+
|Week&nbsp;3
 
 
 
||
 
||
  
<div style="text-align: center;">3.2</div>
+
<div style="text-align: center;">2.4</div>
  
 
||
 
||
 
    
 
    
 
+
[[Arc Length and Surface Area]]  
[[Derivative_function|The Derivative as a Function]]  
 
  
 
||
 
||
  
* [[Graphs of Equations|Graphing Functions]] <!-- 1023-1.1 -->
+
* [[Differentiation Rules]] <!-- 1214-3.3 -->
* [[Continuity|Continuity of a function at a point]] <!-- 1214-2.4 -->
+
* [[The Fundamental Theorem of Calculus]] <!-- 1214-5.3 -->
* [[Defining the Derivative|The derivative represents the slope of the curve at a point]] <!-- 1214-1 -->
+
* [[Integration by Substitution]] <!-- 1224-1.5 -->
* [[The Limit of Functions|When a limit fails to exist]] <!-- 1214-2.2 -->
 
 
 
||
 
 
 
* Define the derivative function of a given function.
 
* Graph a derivative function from the graph of a given function.
 
* State the connection between derivatives and continuity.
 
* Describe three conditions for when a function does not have a derivative.
 
* Explain the meaning of and compute a higher-order derivative.
 
  
 
||
 
||
  
 +
* Determine the length of a plane curve between two points.
 +
* Find the surface area of a solid of revolution.
  
 
|-
 
|-
  
  
|Week&nbsp;4/5
+
|Week&nbsp;4
  
 
||
 
||
  
<div style="text-align: center;">3.3</div>
+
<div style="text-align: center;">2.5</div>
  
 
||
 
||
 
    
 
    
 
+
[[Physical Applications]]
[[Differentiation Rules]]
 
  
 
||
 
||
  
* [[Simplifying Radicals|Radical & Rational Exponents]] <!-- 1073-Mod.R -->
+
* [[Areas of basic shapes]] <!-- Grades 6-12 -->
* [[Simplifying Exponents|Re-write negative exponents]] <!-- 1073-Mod.R -->
+
* [[Volume of a cylinder]] <!-- Grades 6-12 -->
 +
* [[Basic Physics (Mass, Force, Work, Newton's Second Law, Hooke's Law)]] <!-- Grades 6-12 -->
 +
* [[The Fundamental Theorem of Calculus]] <!-- 1214-5.3 -->
 +
* [[Integration by Substitution]] <!-- 1224-1.5 -->
  
 
||
 
||
  
* State the constant, constant multiple, and power rules.
+
* Determine the mass of a one-dimensional object from its linear density function.
* Apply the sum and difference rules to combine derivatives.
+
* Determine the mass of a two-dimensional circular object from its radial density function.
* Use the product rule for finding the derivative of a product of functions.
+
* Calculate the work done by a variable force acting along a line.
* Use the quotient rule for finding the derivative of a quotient of functions.
+
* Calculate the work done in stretching/compressing a spring.
* Extend the power rule to functions with negative exponents.
+
* Calculate the work done in lifting a rope/cable.
* Combine the differentiation rules to find the derivative of a polynomial or rational function.
+
* Calculate the work done in pumping a liquid from one height to another.
 
+
* Find the hydrostatic force against a submerged vertical plate.
||
 
  
  
Line 233: Line 203:
 
||
 
||
  
<div style="text-align: center;">3.4</div>
+
<div style="text-align: center;">2.6</div>
  
||
+
||  
 
 
  
[[Derivatives_Rates_of_Change|Derivatives as Rates of Change]]
+
[[Moments and Center of Mass]]
  
 
||
 
||
  
* [[Functions|Function evaluation at a value]] <!-- 1073-Mod 1.1 -->
+
* [[Toolkit Functions|Graphing elementary functions]] <!-- 1073-Mod 1.2 -->
* [[Solving Equations|Solving an algebraic equation]] <!-- 1073-Mod.R -->
+
* [[The Fundamental Theorem of Calculus]] <!-- 1214-5.3 -->
* [[Differentiation Rules]] <!-- 1214-3.3 -->
+
* [[Integration by Substitution]] <!-- 1224-1.5 -->
  
 
||
 
||
  
* Determine a new value of a quantity from the old value and the amount of change.
+
* Find the center of mass of objects distributed along a line.
* Calculate the average rate of change and explain how it differs from the instantaneous rate of change.
+
* Find the center of mass of objects distributed in a plane.
* Apply rates of change to displacement, velocity, and acceleration of an object moving along a straight line.
+
* Locate the center of mass of a thin plate.
* Predict the future population from the present value and the population growth rate.
+
* Use symmetry to help locate the centroid of a thin plate.
* Use derivatives to calculate marginal cost and revenue in a business situation.
 
 
 
||
 
  
  
Line 260: Line 226:
  
  
|Week&nbsp;5
+
|Week&nbsp;5-6
  
 
||
 
||
  
<div style="text-align: center;">3.5</div>
+
<div style="text-align: center;">3.1</div>
  
||
+
||
 
 
  
[[Derivatives_Trigonometric_Functions|Derivatives of the Trigonometric Functions]]
+
[[Integration by Parts]]
  
 
||
 
||
  
* [[Trigonometric identities]] <!-- 1093-3.4 -->
+
* [[Differentiation Rules]] <!-- 1214-3.3 -->
* [[Trigonometric Functions| Graphs of the Trigonometric Functions]] <!-- 1093-3.1 -->
+
* [[Linear Approximations and Differentials|Differentials]] <!-- 1214-4.2 -->
* [[Differentiation Rules|Rules for finding Derivatives]] <!-- 1214-3.3 -->
+
* [[The Fundamental Theorem of Calculus]] <!-- 1214-5.3 -->
 +
* [[Integration by Substitution]] <!-- 1224-1.5 -->
  
 
||
 
||
  
* Find the derivatives of the sine and cosine function.
+
* Recognize when to use integration by parts.
* Find the derivatives of the standard trigonometric functions.
+
* Use the integration-by-parts formula to evaluate indefinite integrals.
* Calculate the higher-order derivatives of the sine and cosine.
+
* Use the integration-by-parts formula to evaluate definite integrals.
 
+
* Use the tabular method to perform integration by parts.
||
+
* Solve problems involving applications of integration using integration by parts.
  
  
Line 293: Line 259:
 
||
 
||
  
<div style="text-align: center;">3.6</div>
+
<div style="text-align: center;">3.2</div>
||
 
 
 
  
[[Chain_Rule|The Chain Rule]]
+
||  
 
 
||
 
  
* [[Composition of Functions]] <!-- 1073-7 -->
+
[[Trigonometric Integrals]]
* [[Trigonometric Equations|Solve trigonometric equations]] <!-- 1093-3.3 -->
 
* [[Differentiation Rules|Rules for finding Derivatives]] <!-- 1214-3.3 -->
 
  
 
||
 
||
  
* State the chain rule for the composition of two functions.
+
* [[Trigonometric Functions]] <!-- 1093-2.2 -->
* Apply the chain rule together with the power rule.
+
* [[Properties of the Trigonometric Functions|Trigonometric Identities]] <!-- 1093-3.4 -->
* Apply the chain rule and the product/quotient rules correctly in combination when both are necessary.
+
* [[The Fundamental Theorem of Calculus]] <!-- 1214-5.3 -->
* Recognize and apply the chain rule for a composition of three or more functions.
+
* [[Integration by Substitution]] <!-- 1224-1.5 -->
* Use interchangeably the Newton and Leibniz Notation for the Chain Rule.
+
* [[Integration by Parts]] <!-- 1224-3.1 -->
  
 
||
 
||
  
 +
* Evaluate integrals involving products and powers of sin(x) and cos(x).
 +
* Evaluate integrals involving products and powers of sec(x) and tan(x).
 +
* Evaluate integrals involving products of sin(ax), sin(bx), cos(ax), and cos(bx).
 +
* Solve problems involving applications of integration using trigonometric integrals.
  
  
Line 320: Line 284:
  
  
|Week&nbsp;6
+
|Week&nbsp;6-7
  
 
||
 
||
  
<div style="text-align: center;">3.7</div>
+
<div style="text-align: center;">3.3</div>
  
||
+
||
 
 
  
[[Derivatives_Inverse_Functions|Derivatives of Inverse Functions]]
+
[[Trigonometric Substitution]]
  
 
||
 
||
  
* [[Inverse Functions|Injective Functions]] <!-- 1073-7 and 1093-1.7-->
+
* [[Completing the Square]] <!-- 1073-Mod 3.2-->
* [[Inverse Functions]] <!-- 1073-7 -->
+
* [[Trigonometric Functions]] <!-- 1093-2.2 -->
* [[Inverse Trigonometric Functions|Customary domain restrictions for Trigonometric Functions]] <!-- 1093-3.1 -->
+
* [[Properties of the Trigonometric Functions|Trigonometric Identities]] <!-- 1093-3.4 -->
* [[Differentiation Rules]] <!-- 1214-3.3 -->
+
* [[Integration by Substitution]] <!-- 1224-1.5 -->
 +
* [[Integration by Parts]] <!-- 1224-3.1 -->
 +
* [[Trigonometric Integrals]] <!-- 1224-3.2 -->
  
 
||
 
||
  
* State the Inverse Function Theorem for Derivatives.
+
* Evaluate integrals involving the square root of a sum or difference of two squares.
* Apply the Inverse Function Theorem to find the derivative of a function at a point given its inverse and a point on its graph.
+
* Solve problems involving applications of integration using trigonometric substitution.
* Derivatives of the inverse trigonometric functions.
 
 
 
 
 
 
 
|-
 
 
 
 
 
|Week&nbsp;6/7
 
 
 
||
 
 
 
<div style="text-align: center;">3.8</div>
 
 
 
||
 
 
 
 
 
[[Implicit Differentiation]]
 
 
 
||
 
 
 
* '''[[Implicit and explicit equations]]''' <!-- DNE (recommend 1073-7) -->
 
* [[Linear Equations|Linear Functions and Slope]] <!-- 1073-Mod.R -->
 
* [[Functions|Function evaluation]] <!-- 1073-Mod 1.1 -->
 
* [[Differentiation Rules]] <!-- 1214-3.3 -->
 
 
 
||
 
 
 
* Assuming, for example, y is implicitly a function of x, find the derivative of y with respect to x.
 
* Assuming, for example, y is implicitly a function of x, and given an equation relating y to x, find the derivative of y with respect to x.
 
* Find the equation of a line tangent to an implicitly defined curve at a point.
 
  
  
Line 381: Line 316:
 
||
 
||
  
<div style="text-align: center;">3.9</div>
+
<div style="text-align: center;">3.4</div>
  
||
+
||
 
 
  
[[Derivatives of Exponential and Logarithmic Functions]]
+
[[Partial Fractions]]
  
 
||
 
||
  
* [[Logarithmic Functions|Properties of logarithms]] <!-- 1073-8 -->
+
* [[Factoring Polynomials]] <!-- 1073-Mod 0.2 -->
* [[Differentiation Rules]] <!-- 1214-3.3 -->
+
* [[Completing the Square]] <!-- 1073-Mod 3.2-->
* [[Implicit Differentiation]] <!-- 1214-3.8 -->
+
* [[Dividing Polynomials|Long Division of Polynomials]] <!-- 1073-Mod 4.1 -->
 +
* [[Systems of Linear Equations]] <!-- 1073-Mod 12.1 and 12.2 -->
 +
* [[Antiderivatives]] <!-- 1214-4.10 -->
 +
* [[Integration by Substitution]] <!-- 1224-1.5 -->
  
 
||
 
||
  
* Find the derivative of functions that involve exponential functions.
+
* Integrate a rational function whose denominator is a product of linear and quadratic polynomials.
* Find the derivative of functions that involve logarithmic functions.
+
* Recognize distinct linear factors in a rational function.
* Use logarithmic differentiation to find the derivative of functions containing combinations of powers, products, and quotients.
+
* Recognize repeated linear factors in a rational function.
 
+
* Recognize distinct irreducible quadratic factors in a rational function.
 
+
* Recognize repeated irreducible quadratic factors in a rational function.
 +
* Solve problems involving applications of integration using partial fractions.
  
 
|-
 
|-
  
  
|Week&nbsp;7/8  
+
|Week&nbsp;8
  
 
||
 
||
  
<div style="text-align: center;">4.1</div>
+
<div style="text-align: center;">3.7</div>
  
||
+
||
 
 
  
[[Related Rates]]
+
[[Improper Integrals]]
  
 
||
 
||
  
* '''Formulas for area, volume, etc''' <!-- Geometry -->
+
* [[The Fundamental Theorem of Calculus]] <!-- 1214-5.3 -->
* '''Similar triangles to form proportions''' <!-- Geometry -->
+
* [[Integration by Substitution]] <!-- 1224-1.5 -->
* [[Trigonometric Functions]] <!-- 1093-2.2 -->
+
* [[Integration by Parts]] <!-- 1224-3.1 -->
* [[Trigonometric Identities]] <!-- 1093-3.4 -->
+
* [[Trigonometric Integrals]] <!-- 1224-3.2 -->
* [[Differentiation Rules]] <!-- 1214-3.3 -->
+
* [[Trigonometric Substitution]] <!-- 1224-3.3 -->
* [[Implicit Differentiation]] <!-- 1214-3.8 -->
+
* [[Partial Fractions]] <!-- 1224-3.4 -->
 +
* [[The Limit Laws]] <!-- 1214-2.3 -->
 +
* [[Limits at Infinity and Asymptotes| Limits at Infinity]] <!-- 1224-4.6 -->
 +
* [[L’Hôpital’s Rule]] <!-- 1214-4.8 -->
  
 
||
 
||
  
* Express changing quantities in terms of derivatives.
+
* Recognize improper integrals and determine their convergence or divergence.
* Find relationships among the derivatives in a given problem.
+
* Evaluate an integral over an infinite interval.
* Use the chain rule to find the rate of change of one quantity that depends on the rate of change of other quantities.
+
* Evaluate an integral over a closed interval with an infinite discontinuity within the interval.
 
+
* Use the comparison theorem to determine whether an improper integral is convergent or divergent.
 
 
  
 
|-
 
|-
  
  
|Week&nbsp;8   
+
|Week&nbsp;
  
 
||
 
||
  
<div style="text-align: center;">4.2</div>
+
<div style="text-align: center;">5.1</div>
  
||
+
||
 
 
  
[[Linear Approximations and Differentials]]
+
[[Sequences]]
  
 
||
 
||
  
* [[Linear Equations|Slope of a Line]] <!-- Not Directly Mentioned (recommend 1073-Mod.R -->
+
* [[The Limit Laws| The Limit Laws and Squeeze Theorem]] <!-- 1214-2.3 -->
* [[Defining the Derivative|Equation of the tangent line]] <!-- 1214-3.1 -->
+
* [[Limits at Infinity and Asymptotes| Limits at Infinity]] <!-- 1214-4.6 -->
* [[Derivatives as Rates of Change|Leibnitz notation of the derivative]] <!-- 1214-3.4 -->
+
* [[L’Hôpital’s Rule]] <!-- 1214-4.8 -->
 +
* [[Derivatives and the Shape of a Graph| Increasing and Decreasing Functions]] <!-- 1214-4.5 -->
  
 
||
 
||
  
* Approximate the function value close to the center of the linear approximation using the linearization.
+
* Find a formula for the general term of a sequence.
* Given an expression to be evaluated/approximated, come up with the function and its linearization
+
* Find a recursive definition of a sequence.
* Understand the formula for the differential; how it can be used to estimate the change in the dependent variable quantity, given the small change in the independent variable quantity.
+
* Determine the convergence or divergence of a given sequence.
* Use the information above to estimate potential relative (and percentage) error
+
* Find the limit of a convergent sequence.  
 
+
* Determine whether a sequence is bounded and/or monotone.
 
+
* Apply the Monotone Convergence Theorem.
  
 
|-
 
|-
  
  
|Week&nbsp;8/9 
+
|Week&nbsp;10
  
 
||
 
||
  
<div style="text-align: center;">4.3</div>
+
<div style="text-align: center;">5.2</div>
  
||
+
||
 
 
  
[[Maxima and Minima]]
+
[[Infinite Series]]
  
 
||
 
||
  
* '''[[Increasing and a decreasing functions]]''' <!-- DNE (recommend 1023-2.2) -->
+
* [[Sigma notation]] <!-- DNE (recommend 1093) -->
* [[Solving Equations|Solve an algebraic equation]] <!-- 1073-Mod.R-->
+
* [[Sequences]] <!-- 10224-5.1-->
* [[Solving Inequalities|Interval notation]] <!-- 1073-Mod.R -->
+
* [[Partial Fractions]] <!-- 1224-3.4-->
* [[Trigonometric Equations]] <!-- 1093-3.3 -->
 
* [[Differentiation Rules]] <!-- 1214-3.3 -->
 
* [[Derivatives of the Trigonometric Functions]] <!-- 1214-3.5 -->
 
* [[Derivatives of Exponential and Logarithmic Functions]] <!-- 1214-3.9 -->
 
* [[Continuity]] <!-- 1214-2.4 -->
 
  
 
||
 
||
*
 
* Know the definitions of absolute and local extrema.
 
* Know what a critical point is and locate it (them).
 
* Use the Extreme Value Theorem to find the absolute extrema of a continuous function on a closed interval.
 
 
  
 +
* Write an infinite series using sigma notation.
 +
* Find the nth partial sum of an infinite series.
 +
* Define the convergence or divergence of an infinite series.
 +
* Identify a geometric series.
 +
* Apply the Geometric Series Test.
 +
* Find the sum of a convergent geometric series.
 +
* Identify a telescoping series.
 +
* Find the sum of a telescoping series.
  
 
|-
 
|-
  
  
|Week&nbsp;
+
|Week&nbsp;10-11
  
 
||
 
||
  
<div style="text-align: center;">4.4</div>
+
<div style="text-align: center;">5.3</div>
  
||
+
||
 
 
  
[[Mean Value Theorem]]
+
[[The Divergence and Integral Tests]]
  
 
||
 
||
  
* [[Functions|Evaluating Functions]] <!-- 1073-Mod 1.1-->
+
* [[The Limit Laws]] <!-- 1214-2.3 -->
* [[Continuity]] <!-- 1214-2.4 -->
+
* [[Limits at Infinity and Asymptotes| Limits at Infinity]] <!-- 1214-4.6 -->
* [[Defining the Derivative|Slope of a Line]] <!-- 1214-3.1 -->
+
* [[Continuity]] <!-- 1214-3.5 -->
 
+
* [[Derivatives and the Shape of a Graph| Increasing and Decreasing Functions]] <!-- 1214-4.5 -->
||
+
* [[L’Hôpital’s Rule]] <!-- 1214-4.8 -->
 
+
* [[Improper Integrals]] <!-- 1224-3.7 -->
* Determine if the MVT applies given a function on an interval.
 
* Find c in the conclusion of the MVT (if algebraically feasible)
 
* Know the first 3 Corollaries of MVT (especially the 3rd)
 
 
 
 
 
 
 
|-
 
 
 
 
 
|Week&nbsp;9   
 
 
 
||
 
 
 
<div style="text-align: center;">4.5</div>
 
 
 
||
 
 
 
 
 
[[Derivatives and the Shape of a Graph]]
 
 
 
||
 
 
 
* [[Functions|Evaluating Functions]] <!-- 1073-Mod 1.1-->
 
* [[Maxima and Minima|Critical Points of a Function]] <!-- 1214-4.3 -->
 
* [[Derivatives and the Shape of a Graph|Second Derivatives]] <!-- 1214-4.5 -->
 
 
 
||
 
 
 
* Use the First Derivative Test to find intervals on which the function is increasing and decreasing and the local extrema and their type
 
* Use the Concavity Test (aka the Second Derivative Test for Concavity) to find the intervals on which the function is concave up and down, and point(s) of inflection
 
* Understand the shape of the graph, given the signs of the first and second derivatives
 
 
 
 
 
 
 
|-
 
 
 
 
 
|Week&nbsp;10
 
 
 
||
 
 
 
<div style="text-align: center;">4.7</div>
 
 
 
||
 
 
 
 
 
[[Applied Optimization Problems]]
 
 
 
||
 
 
 
* [[Mathematical Modeling]] <!-- 1214-4.1 and 1093-7.6 and 1023-1.3 -->
 
* '''Formulas pertaining to area and volume''' <!-- Geometry -->
 
* [[Functions|Evaluating Functions]] <!-- 1073-Mod 1.1-->
 
* [[Trigonometric Equations]] <!-- 1093-3.3 -->
 
* [[Maxima and Minima|Critical Points of a Function]] <!-- 1214-4.3 -->
 
 
 
||
 
 
 
 
 
* Set up a function to be optimized and find the value(s) of the independent variable which provide the optimal solution.
 
 
 
 
 
|-
 
 
 
 
 
|Week&nbsp;10
 
  
 
||
 
||
  
<div style="text-align: center;">4.8</div>
+
* Use the Divergence Test to determine whether a series diverges.
 
+
* Use the Integral Test to determine whether a series converges or diverges.
||
+
* Use the p-Series Test to determine whether a series converges or diverges.
 
+
* Estimate the sum of a series by finding bounds on its remainder term.
 
 
[[L’Hôpital’s Rule]]
 
 
 
||
 
 
 
* [[Rational Function| Re-expressing Rational Functions ]] <!-- 1073-4 -->
 
* [[The Limit of a Function|When a Limit is Undefined]] <!-- 1214-2.2 -->
 
* [[The Derivative as a Function]] <!-- 1214-3.2 -->
 
 
 
||
 
 
 
* Identify indeterminate forms produced by quotients, products, subtractions, and powers, and apply L’Hôpital’s rule in each case.
 
* Recognize when to apply L’Hôpital’s rule.
 
 
 
 
 
  
 
|-
 
|-
Line 613: Line 467:
 
||
 
||
  
<div style="text-align: center;">4.10</div>
+
<div style="text-align: center;">5.4</div>
  
||
+
||  
 
 
  
[[Antiderivatives]]
+
[[Comparison Tests]]
  
 
||
 
||
  
* [[Inverse Functions]] <!-- 1073-7 -->
+
* [[Limits at Infinity and Asymptotes|Limits at Infinity]] <!-- 1214-4.6-->
* [[The Derivative as a Function]] <!-- 1214-3.2 -->
+
* [[Derivatives and the Shape of a Graph|Increasing and Decreasing Functions]] <!-- 1214-4.5 -->
* [[Derivatives of the Trigonometric Functions]] <!-- 1214-3.5 -->
+
* [[L’Hôpital’s Rule]] <!-- 1214-4.8 -->
 +
* [[Infinite Series|The Geometric Series Test]] <!-- 1224-5.2 -->
 +
* [[The Divergence and Integral Tests|The p-Series Test]] <!-- 1224-5.3 -->
  
 
||
 
||
  
* Find the general antiderivative of a given function.
+
* Use the Direct Comparison Test to determine whether a series converges or diverges.
* Explain the terms and notation used for an indefinite integral.
+
* Use the Limit Comparison Test to determine whether a series converges or diverges.
* State the power rule for integrals.
 
* Use anti-differentiation to solve simple initial-value problems.
 
 
 
 
 
  
 
|-
 
|-
  
  
|Week&nbsp;11/12     
+
|Week&nbsp;12     
  
 
||
 
||
  
<div style="text-align: center;">5.1</div>
+
<div style="text-align: center;">5.5</div>
  
||
+
||
 
 
  
[[Approximating Areas]]
+
[[Alternating Series]]
  
 
||
 
||
  
* '''[[Sigma notation]]''' <!-- DNE (recommend 1093) -->
+
* [[Limits at Infinity and Asymptotes|Limits at Infinity]] <!-- 1214-4.6-->
* '''[[Area of a rectangle]]''' <!-- Grades 6-12 -->
+
* [[Derivatives and the Shape of a Graph|Increasing and Decreasing Functions]] <!-- 1214-4.5 -->
* [[Continuity]] <!-- 1214-3.5 -->
+
* [[L’Hôpital’s Rule]] <!-- 1214-4.8 -->
 +
* [[Infinite Series|The Geometric Series Test]] <!-- 1224-5.2 -->
 +
* [[The Divergence and Integral Tests|The p-Series Test]] <!-- 1224-5.3 -->
 +
* [[Comparison Tests]] <!-- 1224-5.4 -->
  
 
||
 
||
  
* Calculate sums and powers of integers.
+
* Use the Alternating Series Test to determine the convergence of an alternating series.
* Use the sum of rectangular areas to approximate the area under a curve.
+
* Estimate the sum of an alternating series.
* Use Riemann sums to approximate area.
+
* Explain the meaning of absolute convergence and conditional convergence.
 
 
  
  
Line 666: Line 518:
  
  
|Week&nbsp;12  
+
|Week&nbsp;12  
  
 
||
 
||
  
<div style="text-align: center;">5.2</div>
+
<div style="text-align: center;">5.6</div>
  
||
+
||  
 
 
  
[[The Definite Integral]]
+
[[Ratio and Root Tests]]
  
 
||
 
||
  
* [[Antiderivatives]] <!-- 1214-4.10 -->
+
* [[Factorials]] <!-- Grades 6-12 -->
* [[The Limit of a Functions|Limits of Riemann Sums]] <!-- 1214-2.2 -->
+
* [[Limits at Infinity and Asymptotes|Limits at Infinity]] <!-- 1214-4.6-->
* [[Continuity]] <!-- 1214-3.5 -->
+
* [[L’Hôpital’s Rule]] <!-- 1214-4.8 -->
  
 
||
 
||
  
* State the definition of the definite integral.
+
* Use the Ratio Test to determine absolute convergence or divergence of a series.
* Explain the terms integrand, limits of integration, and variable of integration.
+
* Use the Root Test to determine absolute convergence or divergence of a series.
* Explain when a function is integrable.
+
* Describe a strategy for testing the convergence or divergence of a series.
* Rules for the Definite Integral.
 
* Describe the relationship between the definite integral and net area.
 
* Use geometry and the properties of definite integrals to evaluate them.
 
* Calculate the average value of a function.
 
 
 
 
 
  
 
|-
 
|-
  
|Week&nbsp;12/13   
+
|Week&nbsp;13   
  
 
||
 
||
  
<div style="text-align: center;">5.3</div>
+
<div style="text-align: center;">6.1</div>
  
 
||
 
||
 
    
 
    
[[The Fundamental Theorem of Calculus]]
+
[[Power Series and Functions]]
  
 
||
 
||
  
* [[The Derivative of a Function]] <!-- 1214-2.1 -->
+
* [[Infinite Series|The Geometric Series Test]] <!-- 1224-5.2 -->
* [[Antiderivatives]] <!-- 1214-4.10 -->
+
* [[The Divergence and Integral Tests]] <!-- 1224-5.3 -->
* [[Mean Value Theorem]] <!-- 1214-4.4 -->
+
* [[Comparison Tests]] <!-- 1224-5.4 -->
* [[Inverse Functions]] <!-- 1073-7 -->
+
* [[Alternating Series]] <!-- 1224-5.5 -->
 +
* [[Ratio and Root Tests]] <!-- 1224-5.6 -->
  
 
||
 
||
  
* Describe the meaning of the Mean Value Theorem for Integrals.
+
* Identify a power series.
* State the meaning of the Fundamental Theorem of Calculus, Part 1.
+
* Determine the interval of convergence and radius of convergence of a power series.
* Use the Fundamental Theorem of Calculus, Part 1, to evaluate derivatives of integrals.
+
* Use a power series to represent certain functions.
* State the meaning of the Fundamental Theorem of Calculus, Part 2.
 
* Use the Fundamental Theorem of Calculus, Part 2, to evaluate definite integrals.
 
* Explain the relationship between differentiation and integration.
 
 
 
 
 
  
 
|-
 
|-
  
  
|Week&nbsp;13
+
|Week&nbsp;14
  
 
||
 
||
  
<div style="text-align: center;">5.4</div>
+
<div style="text-align: center;">6.2</div>
  
||
+
||  
 
 
  
[[Integration Formulas and the Net Change Theorem]]
+
[[Properties of Power Series]]
  
 
||
 
||
  
* [[Antiderivatives|Indefinite integrals]]  <!-- 1214-4.10 -->
+
* [[Differentiation Rules]] <!-- 1214-3.3 -->
* [[The Fundamental Theorem of Calculus|The Fundamental Theorem (part 2)]]  <!-- 1214-5.3 -->
+
* [[Antiderivatives]]  <!-- 1214-4.10 -->
* [[Toolkit Functions|Displacment vs. distance traveled]] <!-- DNE (recommend 1073-1) -->
+
* [[The Fundamental Theorem of Calculus]]  <!-- 1214-5.3 -->
 
+
* [[Power Series and Functions]] <!-- 1224-6.1 -->
||
 
 
 
* Apply the basic integration formulas.
 
* Explain the significance of the net change theorem.
 
* Use the net change theorem to solve applied problems.
 
* Apply the integrals of odd and even functions.
 
 
 
 
 
 
 
 
 
|-
 
 
 
 
 
|Week&nbsp;14 
 
 
 
||
 
 
 
<div style="text-align: center;">5.5</div>
 
 
 
||
 
 
 
 
 
[[Substitution Method for Integrals]]
 
  
 
||
 
||
  
* [[The Definite Integral|Solving Basic Integrals]] <!-- 1214-5.2 -->
+
* Combine power series by addition or subtraction.
* [[The Derivative of a Function]] <!-- 1214-2.1 -->
+
* Multiply two power series together.
* '''[[Change of Variables]]''' <!-- DNE (recommend 1073-R) -->
+
* Differentiate and integrate power series term-by-term.
 
+
* Use differentiation and integration of power series to represent certain functions as power series.
||
 
 
 
* Use substitution to evaluate indefinite integrals.
 
* Use substitution to evaluate definite integrals.
 
 
 
 
 
 
 
  
 
|-
 
|-
  
  
|Week&nbsp;14/15  
+
|Week&nbsp;15
  
 
||
 
||
  
<div style="text-align: center;">5.6</div>
+
<div style="text-align: center;">6.3</div>
 
 
||
 
 
 
  
 +
|| 
  
[[Integrals Involving Exponential and Logarithmic Functions]]
+
[[Taylor and Maclaurin Series]]
  
 
||
 
||
  
* [[Exponential Functions]] <!-- 1073-8 -->
+
* [[The Derivative as a Function|Higher-Order Derivatives]] <!-- 1214-3.2 -->
* [[Logarithmic Functions]] <!-- 1073-8 -->
+
* [[Power Series and Functions]] <!-- 1224-6.1 -->
* [[Differentiation Rules]] <!-- 1214-5.2 -->
+
* [[Properties of Power Series]] <!-- 1224-6.2 -->
* [[Antiderivatives]] <!-- 1214-4.10 -->
 
  
 
||
 
||
  
* Integrate functions involving exponential functions.
+
* Find a Taylor or Maclaurin series representation of a function.
* Integrate functions involving logarithmic functions.
+
* Find the radius of convergence of a Taylor Series or Maclaurin series.
 
+
* Finding a Taylor polynomial of a given order for a function.
 
+
* Use Taylor's Theorem to estimate the remainder for a Taylor series approximation of a given function.
  
 
|-
 
|-
  
 
+
|}
|Week&nbsp;15 
 
 
 
||
 
 
 
<div style="text-align: center;">5.7</div>
 
 
 
||
 
 
 
 
 
[[Integrals Resulting in Inverse Trigonometric Functions]]
 
 
 
||
 
 
 
* [[The inverse sine, cosine and tangent functions|Trigonometric functions and their inverses]] <!-- 1093-3.1 and 3.2 -->
 
* [[Inverse Functions|Injective Functions]] <!-- 1073-7 and 1093-1.7-->
 
* [[The Definite Integral|Rules for Integration]] <!-- 1214-5.2 -->
 
 
 
||
 
 
 
* Integrate functions resulting in inverse trigonometric functions.
 
 
 
 
||
 

Latest revision as of 09:39, 6 January 2024

The textbook for this course is Calculus (Volume 2) by Gilbert Strang, Edwin Herman, et al.

A comprehensive list of all undergraduate math courses at UTSA can be found here.

The Wikipedia summary of calculus and its history.

Topics List

Date Sections Topics Prerequisite Skills Student Learning Outcomes
Week 1
1.3

The Fundamental Theorem of Calculus

  • Use the Fundamental Theorem of Calculus, Part 1, to evaluate derivatives of integrals.
  • Use the Fundamental Theorem of Calculus, Part 2, to evaluate definite integrals.
  • Explain the relationship between differentiation and integration.
Week 1
1.5

Integration by Substitution

  • Recognize when to use integration by substitution.
  • Use substitution to evaluate indefinite integrals.
  • Use substitution to evaluate definite integrals.
Week 2
2.1

Area between Curves

  • Determine the area of a region between two curves by integrating with respect to the independent variable.
  • Find the area of a compound region.
  • Determine the area of a region between two curves by integrating with respect to the dependent variable.
Week 2
2.2

Determining Volumes by Slicing

  • Determine the volume of a solid by integrating a cross-section (the slicing method).
  • Find the volume of a solid of revolution using the disk method.
  • Find the volume of a solid of revolution with a cavity using the washer method.


Week 3
2.3

Volumes of Revolution, Cylindrical Shells

  • Calculate the volume of a solid of revolution by using the method of cylindrical shells.
  • Compare the different methods for calculating a volume of revolution.
Week 3
2.4

Arc Length and Surface Area

  • Determine the length of a plane curve between two points.
  • Find the surface area of a solid of revolution.
Week 4
2.5

Physical Applications

  • Determine the mass of a one-dimensional object from its linear density function.
  • Determine the mass of a two-dimensional circular object from its radial density function.
  • Calculate the work done by a variable force acting along a line.
  • Calculate the work done in stretching/compressing a spring.
  • Calculate the work done in lifting a rope/cable.
  • Calculate the work done in pumping a liquid from one height to another.
  • Find the hydrostatic force against a submerged vertical plate.


Week 5
2.6

Moments and Center of Mass

  • Find the center of mass of objects distributed along a line.
  • Find the center of mass of objects distributed in a plane.
  • Locate the center of mass of a thin plate.
  • Use symmetry to help locate the centroid of a thin plate.


Week 5-6
3.1

Integration by Parts

  • Recognize when to use integration by parts.
  • Use the integration-by-parts formula to evaluate indefinite integrals.
  • Use the integration-by-parts formula to evaluate definite integrals.
  • Use the tabular method to perform integration by parts.
  • Solve problems involving applications of integration using integration by parts.


Week 6
3.2

Trigonometric Integrals

  • Evaluate integrals involving products and powers of sin(x) and cos(x).
  • Evaluate integrals involving products and powers of sec(x) and tan(x).
  • Evaluate integrals involving products of sin(ax), sin(bx), cos(ax), and cos(bx).
  • Solve problems involving applications of integration using trigonometric integrals.


Week 6-7
3.3

Trigonometric Substitution

  • Evaluate integrals involving the square root of a sum or difference of two squares.
  • Solve problems involving applications of integration using trigonometric substitution.


Week 7
3.4

Partial Fractions

  • Integrate a rational function whose denominator is a product of linear and quadratic polynomials.
  • Recognize distinct linear factors in a rational function.
  • Recognize repeated linear factors in a rational function.
  • Recognize distinct irreducible quadratic factors in a rational function.
  • Recognize repeated irreducible quadratic factors in a rational function.
  • Solve problems involving applications of integration using partial fractions.
Week 8
3.7

Improper Integrals

  • Recognize improper integrals and determine their convergence or divergence.
  • Evaluate an integral over an infinite interval.
  • Evaluate an integral over a closed interval with an infinite discontinuity within the interval.
  • Use the comparison theorem to determine whether an improper integral is convergent or divergent.
Week 9
5.1

Sequences

  • Find a formula for the general term of a sequence.
  • Find a recursive definition of a sequence.
  • Determine the convergence or divergence of a given sequence.
  • Find the limit of a convergent sequence.
  • Determine whether a sequence is bounded and/or monotone.
  • Apply the Monotone Convergence Theorem.
Week 10
5.2

Infinite Series

  • Write an infinite series using sigma notation.
  • Find the nth partial sum of an infinite series.
  • Define the convergence or divergence of an infinite series.
  • Identify a geometric series.
  • Apply the Geometric Series Test.
  • Find the sum of a convergent geometric series.
  • Identify a telescoping series.
  • Find the sum of a telescoping series.
Week 10-11
5.3

The Divergence and Integral Tests

  • Use the Divergence Test to determine whether a series diverges.
  • Use the Integral Test to determine whether a series converges or diverges.
  • Use the p-Series Test to determine whether a series converges or diverges.
  • Estimate the sum of a series by finding bounds on its remainder term.
Week 11
5.4

Comparison Tests

  • Use the Direct Comparison Test to determine whether a series converges or diverges.
  • Use the Limit Comparison Test to determine whether a series converges or diverges.
Week 12
5.5

Alternating Series

  • Use the Alternating Series Test to determine the convergence of an alternating series.
  • Estimate the sum of an alternating series.
  • Explain the meaning of absolute convergence and conditional convergence.


Week 12
5.6

Ratio and Root Tests

  • Use the Ratio Test to determine absolute convergence or divergence of a series.
  • Use the Root Test to determine absolute convergence or divergence of a series.
  • Describe a strategy for testing the convergence or divergence of a series.
Week 13
6.1

Power Series and Functions

  • Identify a power series.
  • Determine the interval of convergence and radius of convergence of a power series.
  • Use a power series to represent certain functions.
Week 14
6.2

Properties of Power Series

  • Combine power series by addition or subtraction.
  • Multiply two power series together.
  • Differentiate and integrate power series term-by-term.
  • Use differentiation and integration of power series to represent certain functions as power series.
Week 15
6.3

Taylor and Maclaurin Series

  • Find a Taylor or Maclaurin series representation of a function.
  • Find the radius of convergence of a Taylor Series or Maclaurin series.
  • Finding a Taylor polynomial of a given order for a function.
  • Use Taylor's Theorem to estimate the remainder for a Taylor series approximation of a given function.